Abstract
We have examined the theory of optothermionic refrigeration combining the ideas of laser cooling and thermionic cooling [Mal'shukov and Chao, Phys. Rev. Lett. 86, 5570 (2001)] and its estimation on thermal energy extraction by using self-consistent calculations with the drift-diffusion model in this paper. Both the Auger and the Shockley-Read-Hall dissipation processes are considered. For GaAs/AlGaAs systems with various impurity concentrations and different widths of quantum well, it is found that the optothermionic cooler can extract thermal energy at a rate as much as 10 W/cm(2). The information to perform optothermionic refrigeration in real devices have also been provided. (c) 2006 American Institute of Physics.
Original language | English |
---|---|
Journal | Applied Physics Reviews |
Volume | 99 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2006 |
Subject classification (UKÄ)
- Condensed Matter Physics (including Material Physics, Nano Physics)