Abstract
Anion exchange membrane water electrolysis (AEMWE) is a potentially low-cost and sustainable technology for hydrogen production that combines the advantages of proton exchange membrane water electrolysis and traditional alkaline water electrolysis systems. Despite considerable research efforts in recent years, the medium-term (100 h) stability of AemionTM membranes needs further investigation. This work explores the chemical and electrochemical durability (>100 h) of AemionTM anion exchange membranes in a flow cell using nickel felt as electrode material on the anode and cathode sides. Remixing the electrolytes between the AEMWE galvanostatic tests was very important to enhance electrolytes refreshment and the voltage stability of the system. The membranes were analyzed by NMR spectroscopy after the AEMWE tests, and the results showed no sign of severe chemical degradation. In a separate experiment, the chemical stability and mechanical integrity of the membranes were studied by soaking them in a strongly alkaline electrolyte for a month (>700 h) at 90 °C, followed by NMR analysis. A certain extent of ionic loss was observed due to chemical degradation and the membranes disintegrated into small pieces.
Original language | English |
---|---|
Pages (from-to) | 16061-16070 |
Number of pages | 10 |
Journal | Journal of Materials Chemistry A |
Volume | 10 |
Issue number | 30 |
DOIs | |
Publication status | Published - 2022 |
Subject classification (UKÄ)
- Chemical Process Engineering
- Polymer Technologies
- Materials Engineering