Anomaly Detection Under Multiplicative Noise Model Uncertainty

Research output: Contribution to journalArticlepeer-review


State estimators are crucial components of anomaly detectors that are used to monitor cyber-physical systems. Many frequently-used state estimators are suscepti- ble to model risk as they rely critically on the availability of an accurate state-space model. Modeling errors make it more difficult to distinguish whether deviations from expected behavior are due to anomalies or simply a lack of knowledge about the system dynamics. In this research, we account for model uncertainty through a multiplicative noise framework. Specifically, we propose to use the multiplicative noise LQG based compensator in this setting to hedge against the model uncertainty risk. The size of the residual from the estimator can then be compared against a threshold to detect anomalies. Finally, the proposed detector is validated using numerical simulations. Extension of state-of-the-art anomaly detection in cyber-physical systems to handle model uncertainty represents the main novel contribution of the present work.
Original languageEnglish
Article number10.1109/LCSYS.2021.3134944
Pages (from-to)1873 - 1878
Number of pages6
JournalIEEE Control Systems Letters
Publication statusAccepted/In press - 2022

Subject classification (UKÄ)

  • Control Engineering


Dive into the research topics of 'Anomaly Detection Under Multiplicative Noise Model Uncertainty'. Together they form a unique fingerprint.

Cite this