Applicability of Parallel Plate Avalanche Counters to Spontaneous Fission from Cf-252

Zafar Yasin, Kurt Hansen, Magnus Lundin, Roger Rassol, Lennart Isaksson, Bent Schröder

Research output: Contribution to journalArticlepeer-review

Abstract

The construction and performance of the parallel plate avalanche counters (PPACs) using a spontaneous fission source Cf-252 is described in this paper. The parallel plate circular electrodes are made of aluminum foils having a thickness less than ten microns. After fabrication, the detectors and the source are mounted inside a reaction chamber, the source between the two detectors. A low pressure is created inside the chamber using isobutane (C4H10) and a high voltage is applied to the electrodes. The detectors are first operated at different pressures and voltages to find the optimum values of the pressure and the voltage. This is necessary to avoid the sparking threshold, to achieve a good time resolution and to keep the gain of the detectors high and constant. The. PPACs are operated in 2 pi- and 4 pi-geometries. In 4 pi-geometry the detectors are allowed to function in coincidence and noncoincidence mode. The resulting pulse height and the time spectra are studied using the computer code ROOT and some conclusions are drawn from these analyses. The pulse height spectrum shows a clear separation between the fission fragments and the alpha particles and the time spectrum indicates a good intrinsic time resolution, 0.76 ns.
Original languageEnglish
JournalInternational Journal of Modern Physics E
Volume21
Issue number4
DOIs
Publication statusPublished - 2012

Subject classification (UKÄ)

  • Physical Sciences
  • Natural Sciences

Keywords

  • PPACs
  • Cf-252
  • spontaneous fission
  • time resolution

Fingerprint

Dive into the research topics of 'Applicability of Parallel Plate Avalanche Counters to Spontaneous Fission from Cf-252'. Together they form a unique fingerprint.

Cite this