Abstract
There is currently a great need for rigid, high-performance and processable bio-based polymers and plastics as alternatives to the fossil-based materials used today. Here, we report on the straightforward synthesis and polymerization of lignin-derived methacrylate monomers based on the methyl esters of syringic, vanillic, and 4-hydroxybenzoic acid, respectively. The corresponding homopolymethacrylates exhibit high glass transition temperatures (Tgs) at 106, 128, and 197 °C, respectively. Rheological properties and thermal stability up to at least 277 °C indicate that these polymers are melt-processable. In addition, copolymers with methyl methacrylate are prepared to further vary and tune the polymer properties. An integrated ex-ante and prospective life-cycle assessment of key environmental impact parameters indicates similar or only slightly higher values compared to well-established fossil-based methyl methacrylate. Moreover, the toxicity towards human HeLa cell lines compares well with that of poly(methyl methacrylate). Hence, the potential availability of lignin-derived acids, combined with the straightforward and potentially upscalable monomer synthesis, make these rigid polymers appealing alternatives towards bio-based high-Tg thermoplastic materials with low toxicity.
Original language | English |
---|---|
Article number | e202401239 |
Journal | ChemSusChem |
Volume | 18 |
Issue number | 2 |
Early online date | 2024 |
DOIs | |
Publication status | Published - 2025 |
Subject classification (UKÄ)
- Polymer Technologies
- Polymer Chemistry
- Materials Chemistry