TY - JOUR
T1 - Arsenite adsorption on cryogels embedded with iron-aluminium double hydrous oxides: Possible polishing step for smelting wastewater?
AU - Suresh, Prashanth
AU - Önnby, Linda
AU - Kirsebom, Harald
PY - 2013
Y1 - 2013
N2 - Arsenic is among the most toxic elements and it commonly exists in water as arsenite (As(III)) and arsenate (As(V)) ions. As(III) removal often requires a pre-oxidation or pH adjustment step and it is a challenge to adsorb As(III) at circumneutral pH. In this study, iron-aluminium double hydrous oxides were synthesized and incorporated into cryogels. The resulting composite cryogels were evaluated for As(III) adsorption. Initial experiments indicated that the adsorbent showed similar adsorption kinetics for both As(V) and As(III) ions. The adsorption of As(III) best fit the Langmuir isotherm and the maximum adsorption capacity was 24.6mg/g. Kinetic modeling indicated that the mechanism of adsorption was chemisorption, making the adsorbent-adsorbate interactions independent of charge and hence allowing the adsorbent to function equally efficient across pH 4-11. A Swedish smelting wastewater was used to evaluate the adsorption performance in continuous mode. The studies showed that the adsorbent was successful in reducing the arsenic concentrations below the European Union emission limit (0.15mg/l) in a smelting wastewater collected after two precipitation processes. The arsenic removal was obtained without requiring a pH adjustment or a pre-oxidation step, making it a potential choice as an adsorbent for As(III) removal from industrial wastewaters.
AB - Arsenic is among the most toxic elements and it commonly exists in water as arsenite (As(III)) and arsenate (As(V)) ions. As(III) removal often requires a pre-oxidation or pH adjustment step and it is a challenge to adsorb As(III) at circumneutral pH. In this study, iron-aluminium double hydrous oxides were synthesized and incorporated into cryogels. The resulting composite cryogels were evaluated for As(III) adsorption. Initial experiments indicated that the adsorbent showed similar adsorption kinetics for both As(V) and As(III) ions. The adsorption of As(III) best fit the Langmuir isotherm and the maximum adsorption capacity was 24.6mg/g. Kinetic modeling indicated that the mechanism of adsorption was chemisorption, making the adsorbent-adsorbate interactions independent of charge and hence allowing the adsorbent to function equally efficient across pH 4-11. A Swedish smelting wastewater was used to evaluate the adsorption performance in continuous mode. The studies showed that the adsorbent was successful in reducing the arsenic concentrations below the European Union emission limit (0.15mg/l) in a smelting wastewater collected after two precipitation processes. The arsenic removal was obtained without requiring a pH adjustment or a pre-oxidation step, making it a potential choice as an adsorbent for As(III) removal from industrial wastewaters.
U2 - 10.1016/j.jhazmat.2013.02.022
DO - 10.1016/j.jhazmat.2013.02.022
M3 - Article
C2 - 23500428
SN - 1873-3336
VL - 250
SP - 469
EP - 476
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
ER -