Atomic-Scale Tuning of Graphene/Cubic SiC Schottky Junction for Stable Low-Bias Photoelectrochemical Solar-to-Fuel Conversion

Hao Li, Yuchen Shi, Huan Shang, Weimin Wang, Jun Lu, Alexei A. Zakharov, Lars Hultman, Roger I.G. Uhrberg, Mikael Syväjärvi, Rositsa Yakimova, Lizhi Zhang, Jianwu Sun

Research output: Contribution to journalArticlepeer-review

Abstract

Engineering tunable graphene-semiconductor interfaces while simultaneously preserving the superior properties of graphene is critical to graphene-based devices for electronic, optoelectronic, biomedical, and photoelectrochemical applications. Here, we demonstrate this challenge can be surmounted by constructing an interesting atomic Schottky junction via epitaxial growth of high-quality and uniform graphene on cubic SiC (3C-SiC). By tailoring the graphene layers, the junction structure described herein exhibits an atomic-scale tunable Schottky junction with an inherent built-in electric field, making it a perfect prototype to systematically comprehend interfacial electronic properties and transport mechanisms. As a proof-of-concept study, the atomic-scale-tuned Schottky junction is demonstrated to promote both the separation and transport of charge carriers in a typical photoelectrochemical system for solar-to-fuel conversion under low bias. Simultaneously, the as-grown monolayer graphene with an extremely high conductivity protects the surface of 3C-SiC from photocorrosion and energetically delivers charge carriers to the loaded cocatalyst, achieving a synergetic enhancement of the catalytic stability and efficiency.

Original languageEnglish
Pages (from-to)4905-4915
Number of pages11
JournalACS Nano
Volume14
Issue number4
DOIs
Publication statusPublished - 2020

Subject classification (UKÄ)

  • Condensed Matter Physics

Free keywords

  • CO2 reduction
  • graphene
  • photoelectrochemistry
  • Schottky junction
  • SiC

Fingerprint

Dive into the research topics of 'Atomic-Scale Tuning of Graphene/Cubic SiC Schottky Junction for Stable Low-Bias Photoelectrochemical Solar-to-Fuel Conversion'. Together they form a unique fingerprint.

Cite this