Abstract
This paper presents a method for auto-tuning interactive ray tracing on GPUs using a hardware model. Getting full performance from modern GPUs is a challenging task. Workloads which require a guaranteed performance over several runs must select parameters for the worst performance of all runs. Our method uses an analyti- cal GPU performance model to predict the current frame’s render- ing time using a selected set of parameters. These parameters are then optimised for a selected frame rate performance on the partic- ular GPU architecture. We use auto-tuning to determine parameters such as phong shading, shadow rays and the number of ambient oc- clusion rays. We sample a priori information about the current ren- dering load to estimate the frame workload. A GPU model is run iteratively using this information to tune rendering parameters for a target frame rate. We use the OpenCL API allowing tuning across different GPU architectures. Our auto-tuning enables the render- ing of each frame to execute in a predicted time, so a target frame rate can be achieved even with widely varying scene complexities. Using this method we can select optimal parameters for the cur- rent execution taking into account the current viewpoint and scene, achieving performance improvements over predetermined parame- ters.
Original language | English |
---|---|
Title of host publication | The ACM International Conference Proceedings Series |
Number of pages | 7 |
Publication status | Published - 2012 |
Event | GPGPU5 - London, United Kingdom Duration: 2012 Mar 3 → … |
Conference
Conference | GPGPU5 |
---|---|
Country/Territory | United Kingdom |
City | London |
Period | 2012/03/03 → … |
Subject classification (UKÄ)
- Computer Sciences
Free keywords
- GPU Model
- Ray Tracing
- Auto-tuning
- OpenCL