TY - JOUR
T1 - Autophagy and ER-stress contribute to photoreceptor degeneration in cultured adult porcine retina.
AU - Mohlin, Camilla
AU - Taylor, Linnéa
AU - Ghosh, Fredrik
AU - Johansson, Kjell
PY - 2014
Y1 - 2014
N2 - The aim of this study was to investigate rod and cone photoreceptor degeneration in organotypic cultures of adult porcine retina. Our hypothesis was that the photoreceptors accumulate opsins, which, together with exposure to cyclic dim light illumination, induce autophagy and endoplasmic reticulum stress (ER-stress) to overcome damaging protein overload. For this purpose, retinas were cultured for 48h and 72h during which they were illuminated with dim light for 8h/day; specimens were analyzed by means of immunohistochemistry, Western blot, real-time polymerase chain reaction (PCR) and transmission electron microscopy. ER-stress and photoreceptor degeneration was observed in conventionally cultured retinas. The additional stress in the form of dim light illumination for 8h/day resulted in increased levels of the ER-stress markers GRP78/BiP and CHOP, as well as increased level of active caspase-12. Increased autophagic processes in cone and rod photoreceptors were detected by LC3B-II increases and occurrence of autophagosomes at the ultrastructural level. Illumination also resulted in altered protein expression for autophagy inducers such as p62 and Beclin-1. Moreover, there was a decrease in phosphorylated mammalian target of rapamycin (mTOR), which further indicate an increase of autophagy. Rod and cone photoreceptors in retinas from a diurnal animal that were exposed to dim light illumination in vitro displayed autophagy and ER-stress processes. As no alteration of rhodopsin mRNA was observed, autophagy and ER-stress are suggested to decrease rhodopsin protein at the posttranscriptional level.
AB - The aim of this study was to investigate rod and cone photoreceptor degeneration in organotypic cultures of adult porcine retina. Our hypothesis was that the photoreceptors accumulate opsins, which, together with exposure to cyclic dim light illumination, induce autophagy and endoplasmic reticulum stress (ER-stress) to overcome damaging protein overload. For this purpose, retinas were cultured for 48h and 72h during which they were illuminated with dim light for 8h/day; specimens were analyzed by means of immunohistochemistry, Western blot, real-time polymerase chain reaction (PCR) and transmission electron microscopy. ER-stress and photoreceptor degeneration was observed in conventionally cultured retinas. The additional stress in the form of dim light illumination for 8h/day resulted in increased levels of the ER-stress markers GRP78/BiP and CHOP, as well as increased level of active caspase-12. Increased autophagic processes in cone and rod photoreceptors were detected by LC3B-II increases and occurrence of autophagosomes at the ultrastructural level. Illumination also resulted in altered protein expression for autophagy inducers such as p62 and Beclin-1. Moreover, there was a decrease in phosphorylated mammalian target of rapamycin (mTOR), which further indicate an increase of autophagy. Rod and cone photoreceptors in retinas from a diurnal animal that were exposed to dim light illumination in vitro displayed autophagy and ER-stress processes. As no alteration of rhodopsin mRNA was observed, autophagy and ER-stress are suggested to decrease rhodopsin protein at the posttranscriptional level.
U2 - 10.1016/j.brainres.2014.08.055
DO - 10.1016/j.brainres.2014.08.055
M3 - Article
C2 - 25173074
SN - 1872-6240
VL - 1585
SP - 167
EP - 183
JO - Brain Research
JF - Brain Research
IS - Aug 28
ER -