TY - JOUR
T1 - B lymphocyte specification is preceded by extensive epigenetic priming in multipotent progenitors
AU - Strid, Tobias
AU - Okuyama, Kazuki
AU - Tingvall-Gustafsson, Johanna
AU - Kuruvilla, Jacob
AU - Jensen, Christina T.
AU - Lang, Stefan
AU - Prasad, Mahadesh
AU - Somasundaram, Rajesh
AU - Åhsberg, Josefine
AU - Cristobal, Susana
AU - Soneji, Shamit
AU - Ungerback, Jonas
AU - Sigvardsson, Mikael
PY - 2021/6
Y1 - 2021/6
N2 - B lymphocyte development is dependent on the interplay between the chromatin landscape and lineage-specific transcription factors. It has been suggested that B lineage commitment is associated with major changes in the nuclear chromatin environment, proposing a critical role for lineage-specific transcription factors in the formation of the epigenetic landscape. In this report, we have used chromosome conformation capture in combination with assay for transposase-accessible chromatin sequencing analysis to enable highly efficient annotation of both proximal and distal transcriptional control elements to genes activated in B lineage specification in mice. A large majority of these genes were annotated to at least one regulatory element with an accessible chromatin configuration in multipotent progenitors. Furthermore, the majority of binding sites for the key regulators of B lineage specification, EBF1 and PAX5, occurred in already accessible regions. EBF1 did, however, cause a dynamic change in assay for transposase-accessible chromatin accessibility and was critical for an increase in distal promoter-enhancer interactions. Our data unravel an extensive epigenetic priming at regulatory elements annotated to lineage-restricted genes and provide insight into the interplay between the epigenetic landscape and transcription factors in cell specification.
AB - B lymphocyte development is dependent on the interplay between the chromatin landscape and lineage-specific transcription factors. It has been suggested that B lineage commitment is associated with major changes in the nuclear chromatin environment, proposing a critical role for lineage-specific transcription factors in the formation of the epigenetic landscape. In this report, we have used chromosome conformation capture in combination with assay for transposase-accessible chromatin sequencing analysis to enable highly efficient annotation of both proximal and distal transcriptional control elements to genes activated in B lineage specification in mice. A large majority of these genes were annotated to at least one regulatory element with an accessible chromatin configuration in multipotent progenitors. Furthermore, the majority of binding sites for the key regulators of B lineage specification, EBF1 and PAX5, occurred in already accessible regions. EBF1 did, however, cause a dynamic change in assay for transposase-accessible chromatin accessibility and was critical for an increase in distal promoter-enhancer interactions. Our data unravel an extensive epigenetic priming at regulatory elements annotated to lineage-restricted genes and provide insight into the interplay between the epigenetic landscape and transcription factors in cell specification.
U2 - 10.4049/jimmunol.2100048
DO - 10.4049/jimmunol.2100048
M3 - Article
C2 - 34021049
AN - SCOPUS:85107067456
SN - 0022-1767
VL - 206
SP - 2700
EP - 2713
JO - Journal of Immunology
JF - Journal of Immunology
IS - 11
ER -