Behavior underpins the predictive power of a trait-based model of butterfly movement

Luke C. Evans, Richard M. Sibly, Pernille Thorbek, Ian Sims, Tom H. Oliver, Richard J. Walters

Research output: Contribution to journalArticlepeer-review

Abstract

Dispersal ability is key to species persistence in times of environmental change. Assessing a species' vulnerability and response to anthropogenic changes is often performed using one of two methods: correlative approaches that infer dispersal potential based on traits, such as wingspan or an index of mobility derived from expert opinion, or a mechanistic modeling approach that extrapolates displacement rates from empirical data on short-term movements. Here, we compare and evaluate the success of the correlative and mechanistic approaches using a mechanistic random-walk model of butterfly movement that incorporates relationships between wingspan and sex-specific movement behaviors. The model was parameterized with new data collected on four species of butterfly in the south of England, and we observe how wingspan relates to flight speeds, turning angles, flight durations, and displacement rates. We show that flight speeds and turning angles correlate with wingspan but that to achieve good prediction of displacement even over 10 min the model must also include details of sex- and species-specific movement behaviors. We discuss what factors are likely to differentially motivate the sexes and how these could be included in mechanistic models of dispersal to improve their use in ecological forecasting.

Original languageEnglish
Pages (from-to)3200-3208
Number of pages9
JournalEcology and Evolution
Volume10
Issue number7
DOIs
Publication statusPublished - 2020 Apr

Subject classification (UKÄ)

  • Ecology

Free keywords

  • body size
  • dispersal
  • Lepidoptera
  • motivation

Fingerprint

Dive into the research topics of 'Behavior underpins the predictive power of a trait-based model of butterfly movement'. Together they form a unique fingerprint.

Cite this