Abstract
Many cells are mechanoregulated; their activities are performed at a rate partly determined by the biophysical stimulus acting on them. Computer simulations that would capture this could be used to predict the effect of physical exercise on tissue health. They could also be used to simulate how the tissues surrounding a medical device would respond to the placement of that device. Since cells are the actors within tissues, such simulations require models of how cells themselves are mechanoregulated. In this chapter, we review how mechanoregulation simulations may be built up from models in three ways: cells as simple points, cells as multiple points, cells as structures. In particular, a computer simulation method for tissue differentiation using cells as points is also given, and an approach for extending it to include cells as multiple points is presented. Cells as structures in the form of a hybrid tensegrity-continuum model is presented, and its potential for use in mechanoregulation simulations is discussed.
Original language | English |
---|---|
Title of host publication | Cellular and Biomolecular Mechanics and Mechanobiology |
Editors | Amit Gefen |
Publisher | Springer |
Pages | 297-329 |
ISBN (Print) | 978-3-642-14217-8 |
DOIs | |
Publication status | Published - 2011 |
Externally published | Yes |
Subject classification (UKÄ)
- Medical Engineering