Blockade of the MEK/ERK pathway with a raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model.

Research output: Contribution to journalArticlepeer-review

Abstract

Cerebral ischemia that develops after subarachnoid hemorrhage (SAH) carries high morbidity and mortality. Inflammatory mediators are involved in the development of cerebral ischemia through activation of the mitogen-activated protein kinase pathway. We hypothesized that blockade of the MAPkinase/ERK (MEK)/extracellular signal-regulated kinase (ERK) pathway upstream with a specific raf inhibitor would prevent SAH-induced activation of the cerebrovascular inflammatory response. The raf inhibitor SB-386023-b was injected intracisternally in our rat model at 0, 6, or 12 hours after the SAH. After 48 hours, cerebral arteries were harvested, and iNOS, interleukin (IL)-6, IL-1beta, matrix metalloproteinase (MMP)-9, tissue inhibitors of metalloproteinase (TIMP)-1, and phosphorylated ERK1/2 were investigated by immunofluorescence, real-time polymerase chain reaction (PCR), and Western blot analysis. Cerebral blood flow (CBF) was measured using autoradiography. Protein levels of MMP-9, TIMP-1, iNOS, IL-6, and IL-1beta were increased after SAH, as were mRNA levels of IL-6, MMP-9, and TIMP-1. After SAH, pERK1/2 was increased, but CBF was reduced. Treatment with SB-386023-b at 0 or 6 hours after SAH normalized CBF and prevented SAH-induced upregulation of MMPs, pro-inflammatory cytokines, and pERK1/2 proteins. These results suggested that inhibition of MEK/ERK signal transduction by a specific raf inhibitor administered up to 6 hours after SAH normalized the expression of pro-inflammatory mediators and extracellular matrix-related genes.Journal of Cerebral Blood Flow & Metabolism advance online publication, 28 April 2010; doi:10.1038/jcbfm.2010.62.

Subject classification (UKÄ)

  • Cardiac and Cardiovascular Systems

Fingerprint

Dive into the research topics of 'Blockade of the MEK/ERK pathway with a raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model.'. Together they form a unique fingerprint.

Cite this