Abstract
Exploratory synthesis in the area of polar intermetallics has yielded a rich variety of structures that offer clues into the transition in bonding between Zintl and Hume-Rothery phases. In this article, we present a bonding analysis of one such compound, Ca10Pt7Si3, whose large Ca content offers the potential for negative formal oxidation states on the Pt. The structure can be divided into a sublattice of Ca cations and a Pt-Si polyanionic network built from Pt7Si3 trefoil units linked through Pt-Pt contacts of 3.14 Å. DFT-calibrated Hückel models reveal that the compound adheres well to a Zintl-like electron counting scheme, in which the Pt-Si and Pt-Pt contacts are equated with two-center two-electron bonds. The experimental electron count is in excess of that predicted by 2%, a discrepancy which is attributed to the electron transfer from the Ca to the Pt-Si network being incomplete. For the Pt-Pt contacts, the occupancy of the bonding orbitals is dependent on the participation of the surrounding Ca atoms in bridging interactions. This use of multi-center interactions isolobal to classical two-center two-electron bonds may illustrate one path by which the bonds delocalize as one moves from the Zintl phases toward the Hume-Rothery domain.
Original language | English |
---|---|
Pages (from-to) | 504-516 |
Number of pages | 13 |
Journal | Crystals |
Volume | 3 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2013 Sept 3 |
Subject classification (UKÄ)
- Inorganic Chemistry
Free keywords
- Electronic structure
- Intermetallics
- Platinides
- Zintl phases