TY - JOUR
T1 - Calcium Current Inactivation Rather than Pool Depletion Explains Reduced Exocytotic Rate with Prolonged Stimulation in Insulin-Secreting INS-1 832/13 Cells.
AU - Pedersen, Morten Gram
AU - Salunkhe, Vishal Ashok
AU - Svedin, Emma
AU - Edlund, Anna
AU - Eliasson, Lena
PY - 2014
Y1 - 2014
N2 - Impairment in beta-cell exocytosis is associated with reduced insulin secretion and diabetes. Here we aimed to investigate the dynamics of Ca2+-dependent insulin exocytosis with respect to pool depletion and Ca2+-current inactivation. We studied exocytosis, measured as increase in membrane capacitance (ΔCm), as a function of calcium entry (Q) in insulin secreting INS-1 832/13 cells using patch clamp and mixed-effects statistical analysis. The observed linear relationship between ΔCm and Q suggests that Ca2+-channel inactivation rather than granule pool restrictions is responsible for the decline in exocytosis observed at longer depolarizations. INS-1 832/13 cells possess an immediately releasable pool (IRP) of ∼10 granules and most exocytosis of granules occurs from a large pool. The latter is attenuated by the calcium-buffer EGTA, while IRP is unaffected. These findings suggest that most insulin release occurs away from Ca2+-channels, and that pool depletion plays a minor role in the decline of exocytosis upon prolonged stimulation.
AB - Impairment in beta-cell exocytosis is associated with reduced insulin secretion and diabetes. Here we aimed to investigate the dynamics of Ca2+-dependent insulin exocytosis with respect to pool depletion and Ca2+-current inactivation. We studied exocytosis, measured as increase in membrane capacitance (ΔCm), as a function of calcium entry (Q) in insulin secreting INS-1 832/13 cells using patch clamp and mixed-effects statistical analysis. The observed linear relationship between ΔCm and Q suggests that Ca2+-channel inactivation rather than granule pool restrictions is responsible for the decline in exocytosis observed at longer depolarizations. INS-1 832/13 cells possess an immediately releasable pool (IRP) of ∼10 granules and most exocytosis of granules occurs from a large pool. The latter is attenuated by the calcium-buffer EGTA, while IRP is unaffected. These findings suggest that most insulin release occurs away from Ca2+-channels, and that pool depletion plays a minor role in the decline of exocytosis upon prolonged stimulation.
U2 - 10.1371/journal.pone.0103874
DO - 10.1371/journal.pone.0103874
M3 - Article
C2 - 25105407
SN - 1932-6203
VL - 9
JO - PLoS ONE
JF - PLoS ONE
IS - 8
M1 - e103874
ER -