Can the narrow red bands of dragonflies be used to perceive wing interference patterns?

Mikkel Brydegaard, Samuel Jansson, Marcus Schulz, Anna Runemark

Research output: Contribution to journalArticlepeer-review

Abstract

Despite numerous studies of selection on position and number of spectral vision bands, explanations to the function of narrow spectral bands are lacking. We investigate dragonflies (Odonata), which have the narrowest spectral bands reported, in order to investigate what features these narrow spectral bands may be used to perceive. We address whether it is likely that narrow red bands can be used to identify conspecifics by the optical signature from wing interference patterns (WIPs). We investigate the optical signatures of Odonata wings using hyperspectral imaging, laser profiling, ellipsometry, polarimetric modulation spectroscopy, and laser radar experiments. Based on results, we estimate the prospects for Odonata perception of WIPs to identify conspecifics in the spectral, spatial, intensity, polarization, angular, and temporal domains. We find six lines of evidence consistent with an ability to perceive WIPs. First, the wing membrane thickness of the studied Odonata is 2.3 μm, coinciding with the maximal thickness perceivable by the reported bandwidth. Second, flat wings imply that WIPs persist from whole wings, which can be seen at a distance. Third, WIPs constitute a major brightness in the visual environment only second after the solar disk. Fourth, WIPs exhibit high degree of polarization and polarization vision coincides with frontal narrow red bands in Odonata. Fifth, the angular light incidence on the Odonata composite eye provides all prerequisites for direct assessment of the refractive index which is associated with age. Sixth, WIPs from conspecifics in flight make a significant contribution even to the fundamental wingbeat frequency within the flicker fusion bandwidth of Odonata vision. We conclude that it is likely that WIPs can be perceived by the narrow red bands found in some Odonata species and propose future behavioral and electrophysiological tests of this hypothesis.

Original languageEnglish
Pages (from-to)5369-5384
JournalEcology and Evolution
Volume8
Issue number11
Early online date2018 Jan 1
DOIs
Publication statusPublished - 2018 Jun

Subject classification (UKÄ)

  • Other Physics Topics
  • Zoology

Free keywords

  • Mate choice
  • Odonata
  • Private channels
  • Sexual signaling
  • Visual ecology
  • Wing interference patterns

Fingerprint

Dive into the research topics of 'Can the narrow red bands of dragonflies be used to perceive wing interference patterns?'. Together they form a unique fingerprint.

Cite this