Carrier and field dynamics around nanoscale Schottky contacts investigated by ultrafast near-field optics

M Achermann, F Morier-Genoud, Werner Seifert, Lars-Erik Wernersson, U Siegner, U Keller

Research output: Contribution to journalArticlepeer-review

Abstract

We present femtosecond-resolved optical near-field pump-probe measurements of spatiotemporal carrier dynamics around a single nanoscale tungsten (W) disk embedded in GaAs. In these samples, Schottky contacts are formed at the W/GaAs interface. The experimental results are modeled by a selfconsistent treatment of the drift-diffusion equation for the carriers and Poisson's equation for the built-in electric field. At lower optically excited carrier densities, we observe that the built-in field suppresses electron transport towards and trapping into the metal particles. In this regime, an accumulation of carriers is seen at the edge of the depletion region of the Schottky contacts. The calculation reveals that the formation of a self-induced dynamic potential well is the origin of this result. In the high-density regime, efficient carrier transport towards and trapping into the W nanoparticle take place, resulting from the screening of the built-in field. These results allow us to describe measurements of the carrier dynamics in annealed low-temperature grown GaAs and demonstrate that the coupling of the carrier and field dynamics can substantially affect carrier trapping in metal-semiconductor composite materials.
Original languageEnglish
Article number045322
JournalPhysical Review B (Condensed Matter and Materials Physics)
Volume65
Issue number4
DOIs
Publication statusPublished - 2002

Subject classification (UKÄ)

  • Condensed Matter Physics
  • Electrical Engineering, Electronic Engineering, Information Engineering

Fingerprint

Dive into the research topics of 'Carrier and field dynamics around nanoscale Schottky contacts investigated by ultrafast near-field optics'. Together they form a unique fingerprint.

Cite this