Characterisation of human AV-nodal properties using a network model

Mikael Wallman, Frida Sandberg

Research output: Contribution to journalArticlepeer-review

Abstract

Characterisation of the AV-node is an important step in determining the optimal form of treatment for supraventricular tachycardias. To integrate and analyse patient-specific measurements, mathematical modelling has emerged as a valuable tool. Here we present a model of the human AV-node, consisting of a series of interacting nodes, each with separate dynamics in refractory time and conduction delay. The model is evaluated in several scenarios, including atrial fibrillation (AF) and clinical pacing, using simulated and measured data. The model is able to replicate signals derived from clinical ECG data as well as from invasive measurements, both under AF and pacing. To quantify the uncertainty in parameter estimation, 1000 parameter sets were sampled, showing that model output similar to data corresponds to limited regions in the model parameter space. The model is the first human AV-node model to capture both spatial and temporal dynamics while being efficient enough to allow interactive use on clinical timescales, as well as parameter estimation and uncertainty quantification. As such, it fills a new niche in the current set of published models and forms a valuable tool for both understanding and clinical research.
Original languageEnglish
Pages (from-to)247-259
JournalMedical & Biological Engineering & Computing
Volume56
Issue number2
Early online date2017
DOIs
Publication statusPublished - 2018 Feb

Subject classification (UKÄ)

  • Medical Laboratory Technologies

Fingerprint

Dive into the research topics of 'Characterisation of human AV-nodal properties using a network model'. Together they form a unique fingerprint.

Cite this