Abstract
The cholinergic regulation of phospholipase D activity was studied in SH-SY5Y human neuroblastoma cells with phosphatidylethanol formation as a specific marker for the enzyme activity. The muscarinic antagonists, hexahydrosiladifenidol and pirenzepine, inhibited carbachol-induced phosphatidylethanol formation in a concentration-dependent manner and the inhibitory constants indicated that muscarinic M1 receptors are responsible for the major part of the phospholipase D activation. The mechanism of receptor-mediated phospholipase D activation varies between different cell types and receptors. In SH-SY5Y cells, the carbachol-induced phospholipase D activity was inhibited by protein kinase C inhibitors. Since both phospholipases D and C are activated by muscarinic stimulation in SH-SY5Y cells, most of the phospholipase D activation is probably secondary to the protein kinase C activation that follows phospholipase C-mediated increase in diacylglycerols. Other kinases may be involved in the regulation since also a tyrosine kinase inhibitor decreased the phosphatidylethanol formation. Stimulation of G-protein(s) and increase in the intracellular Ca2+ concentration activated phospholipase D and may be additional mechanisms for the muscarinic regulation of phospholipase D in SH-SY5Y cells. Propranolol, an inhibitor of phosphatidic acid phosphohydrolase, increased the carbachol-induced formation of phosphatidic acid at the expense of 1,2-diacylglycerol. This indicates that phospholipase D contributes to the formation of 1,2-diacylglycerol after carbachol stimulation in SH-SY5Y cells.
Original language | English |
---|---|
Pages (from-to) | 295-304 |
Journal | Neuropharmacology |
Volume | 36 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1997 |
Bibliographical note
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Tumour Cell Biology (013017530)
Subject classification (UKÄ)
- Pharmacology and Toxicology
Keywords
- G-protein
- acetylcholine
- muscarinic receptor
- phosphatidylethanol
- phospholipase D
- protein kinases
- signal transduction