Chemical Understanding of the Limited Site-Specificity in Molecular Inner-Shell Photofragmentation

Ludger Inhester, Bart Oostenrijk, Minna Patanen, Esko Kokkonen, Stephen H. Southworth, Christoph Bostedt, Oksana Travnikova, Tatiana Marchenko, Sang Kil Son, Robin Santra, Marc Simon, Linda Young, Stacey L. Sorensen

Research output: Contribution to journalArticlepeer-review

Abstract

In many cases fragmentation of molecules upon inner-shell ionization is very unspecific with respect to the initially localized ionization site. Often this finding is interpreted in terms of an equilibration of internal energy into vibrational degrees of freedom after Auger decay. We investigate the X-ray photofragmentation of ethyl trifluoroacetate upon core electron ionization at environmentally distinct carbon sites using photoelectron-photoion-photoion coincidence measurements and ab initio electronic structure calculations. For all four carbon ionization sites, the Auger decay weakens the same bonds and transfers the two charges to opposite ends of the molecule, which leads to a rapid dissociation into three fragments, followed by further fragmentation steps. The lack of site specificity is attributed to the character of the dicationic electronic states after Auger decay instead of a fast equilibration of internal energy.

Original languageEnglish
Pages (from-to)1156-1163
Number of pages8
JournalJournal of Physical Chemistry Letters
Volume9
Issue number5
DOIs
Publication statusPublished - 2018 Mar 1

Subject classification (UKÄ)

  • Physical Chemistry (including Surface- and Colloid Chemistry)
  • Atom and Molecular Physics and Optics

Fingerprint

Dive into the research topics of 'Chemical Understanding of the Limited Site-Specificity in Molecular Inner-Shell Photofragmentation'. Together they form a unique fingerprint.

Cite this