Abstract
Chk1 kinase coordinates cell cycle progression and preserves genome integrity. Here, we show that chemical or genetic ablation of human Chk1 triggered supraphysiological accumulation of the S phase-promoting Cdc25A phosphatase, prevented ionizing radiation (IR)-induced degradation of Cdc25A, and caused radioresistant DNA synthesis (RDS). The basal turnover of Cdc25A operating in unperturbed S phase required Chk1-dependent phosphorylation of serines 123, 178, 278, and 292. IR-induced acceleration of Cdc25A proteolysis correlated with increased phosphate incorporation into these residues generated by a combined action of Chk1 and Chk2 kinases. Finally, phosphorylation of Chk1 by ATM was required to fully accelerate the IR-induced degradation of Cdc25A. Our results provide evidence that the mammalian S phase checkpoint functions via amplification of physiologically operating, Chk1-dependent mechanisms.
Original language | English |
---|---|
Pages (from-to) | 247-258 |
Journal | Cancer Cell |
Volume | 3 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2003 |
Externally published | Yes |
Bibliographical note
The information about affiliations in this record was updated in December 2015.The record was previously connected to the following departments: Experimental Clinical Chemistry (013016010)
Subject classification (UKÄ)
- Cancer and Oncology