Abstract
Early detection of risk of breast cancer is of upmost importance for effective treatment. In the field of medical image analysis, automatic methods have been developed to discover features of ductal trees that are correlated with radiological findings regarding breast cancer. In this study, a data mining approach is proposed that captures a new set of geometrical properties of ductal trees. The extracted features are employed in an ensemble learning scheme in order to classify galactograms, medical images which visualize the tree structure of breast ducts. For classification, three variants of the AdaBoost algorithm are explored using as weak learner the CART decision tree. Although the new methodology does not improve the classification performance compared to state-of-the-art techniques, it offers useful information regarding the geometrical features that could be used as biomarkers providing insight to the relationship between ductal tree topology and pathology of human breast.
Original language | English |
---|---|
Pages (from-to) | 146-155 |
Number of pages | 10 |
Journal | Communications in Computer and Information Science |
Volume | 384 |
DOIs | |
Publication status | Published - 2013 |
Externally published | Yes |
Subject classification (UKÄ)
- Medical Engineering
- Cancer and Oncology
Free keywords
- Breast imaging
- Classifier ensembles
- Feature extraction