TY - JOUR
T1 - Cluster-Driven Dynamical Arrest in Concentrated Lysozyme Solutions
AU - Cardinaux, Frederic
AU - Zaccarelli, Emanuela
AU - Stradner, Anna
AU - Bucciarelli, Saskia
AU - Farago, Bela
AU - Egelhaaf, Stefan U.
AU - Sciortino, Francesco
AU - Schurtenberger, Peter
PY - 2011
Y1 - 2011
N2 - We present a detailed experimental and numerical study of the structural and dynamical properties of salt-free lysozyme solutions. In particular, by combining small-angle X-ray scattering (SAXS) data with neutron spin echo (NSE) and rheology experiments, we are able to identify that an arrest transition takes place at intermediate densities, driven by the slowing down of the cluster motion. Using an effective pair potential among proteins, based on the combination of short-range attraction and long-range repulsion, we account remarkably well for the peculiar volume fraction dependence of the effective structure factor measured by SAXS. We show that a transition from a monomer to a cluster-dominated fluid happens at volume fractions larger than phi greater than or similar to 0.05 where the close agreement between NSE measurements and Brownian dynamics simulations confirms the transient nature of the clusters. Clusters even stay transient above the geometric percolation found in simulation at phi > 0.15, though NSE reveals a cluster lifetime that becomes increasingly large and indicates a divergence of the diffusivity at phi greater than or similar to 0.26. Macroscopic measurements of the viscosity confirm this transition where the long-lived-nature of the clusters is at the origin of the simultaneous dynamical arrest at all length scales.
AB - We present a detailed experimental and numerical study of the structural and dynamical properties of salt-free lysozyme solutions. In particular, by combining small-angle X-ray scattering (SAXS) data with neutron spin echo (NSE) and rheology experiments, we are able to identify that an arrest transition takes place at intermediate densities, driven by the slowing down of the cluster motion. Using an effective pair potential among proteins, based on the combination of short-range attraction and long-range repulsion, we account remarkably well for the peculiar volume fraction dependence of the effective structure factor measured by SAXS. We show that a transition from a monomer to a cluster-dominated fluid happens at volume fractions larger than phi greater than or similar to 0.05 where the close agreement between NSE measurements and Brownian dynamics simulations confirms the transient nature of the clusters. Clusters even stay transient above the geometric percolation found in simulation at phi > 0.15, though NSE reveals a cluster lifetime that becomes increasingly large and indicates a divergence of the diffusivity at phi greater than or similar to 0.26. Macroscopic measurements of the viscosity confirm this transition where the long-lived-nature of the clusters is at the origin of the simultaneous dynamical arrest at all length scales.
U2 - 10.1021/jp112180p
DO - 10.1021/jp112180p
M3 - Article
C2 - 21528887
SN - 1520-5207
VL - 115
SP - 7227
EP - 7237
JO - The Journal of Physical Chemistry Part B
JF - The Journal of Physical Chemistry Part B
IS - 22
ER -