TY - JOUR
T1 - Community adaptation to temperature explains abrupt soil bacterial community shift along a geothermal gradient on Iceland
AU - Weedon, James T.
AU - Bååth, Erland
AU - Rijkers, Ruud
AU - Reischke, Stephanie
AU - Sigurdsson, Bjarni D.
AU - Oddsdottir, Edda
AU - van Hal, Jurgen
AU - Aerts, Rien
AU - Janssens, Ivan A.
AU - van Bodegom, Peter M.
PY - 2023/2
Y1 - 2023/2
N2 - Understanding how and why soil microbial communities respond to temperature changes is important for understanding the drivers of microbial distribution and abundance. Studying soil microbe responses to warming is often made difficult by concurrent warming effects on soil and vegetation and by a limited number of warming levels preventing the detection of non-linear effects. A unique area in Iceland, where soil temperatures have recently increased due to geothermic activity, created a stable warming gradient in both grassland (dominated by Agrostis capillaris) and forest (Picea sitchensis) vegetation. By sampling soils which had been subjected to four years of temperature elevation (ambient (MAT 5.2 °C) to +40 °C), we investigated the shape of the response of soil bacterial communities to warming, and their associated community temperature adaptation. We used 16S rRNA amplicon sequencing to profile bacterial communities, and bacterial growth-based assays (3H-Leu incorporation) to characterize community adaptation using a temperature sensitivity index (SI, log (growth at 40 °C/4 °C)). Despite highly dissimilar bacterial community composition between the grassland and forest, they adapted similarly to warming. SI was 0.6 (equivalent to a minimum temperature for growth of between −6 and −7 °C) in both control plots. Both diversity and community composition, as well as SI, showed similar threshold dynamics along the soil temperature gradient. There were no significant changes up to soil warming of 6–9 °C above ambient, beyond which all indices shifted in parallel, with SI increasing from 0.6 to 1.5. The consistency of these responses provide evidence for an important role for temperature as a direct driver of bacterial community shifts along soil temperature gradients.
AB - Understanding how and why soil microbial communities respond to temperature changes is important for understanding the drivers of microbial distribution and abundance. Studying soil microbe responses to warming is often made difficult by concurrent warming effects on soil and vegetation and by a limited number of warming levels preventing the detection of non-linear effects. A unique area in Iceland, where soil temperatures have recently increased due to geothermic activity, created a stable warming gradient in both grassland (dominated by Agrostis capillaris) and forest (Picea sitchensis) vegetation. By sampling soils which had been subjected to four years of temperature elevation (ambient (MAT 5.2 °C) to +40 °C), we investigated the shape of the response of soil bacterial communities to warming, and their associated community temperature adaptation. We used 16S rRNA amplicon sequencing to profile bacterial communities, and bacterial growth-based assays (3H-Leu incorporation) to characterize community adaptation using a temperature sensitivity index (SI, log (growth at 40 °C/4 °C)). Despite highly dissimilar bacterial community composition between the grassland and forest, they adapted similarly to warming. SI was 0.6 (equivalent to a minimum temperature for growth of between −6 and −7 °C) in both control plots. Both diversity and community composition, as well as SI, showed similar threshold dynamics along the soil temperature gradient. There were no significant changes up to soil warming of 6–9 °C above ambient, beyond which all indices shifted in parallel, with SI increasing from 0.6 to 1.5. The consistency of these responses provide evidence for an important role for temperature as a direct driver of bacterial community shifts along soil temperature gradients.
KW - Bacterial growth
KW - Geothermic gradient
KW - Soil bacterial community
KW - Temperature adaptation
KW - Threshold
U2 - 10.1016/j.soilbio.2022.108914
DO - 10.1016/j.soilbio.2022.108914
M3 - Article
AN - SCOPUS:85144026102
SN - 0038-0717
VL - 177
JO - Soil Biology and Biochemistry
JF - Soil Biology and Biochemistry
M1 - 108914
ER -