Computer-aided ventilator resetting is feasible on the basis of a physiological profile.

Leif Uttman, Björn Jonson

Research output: Contribution to journalArticlepeer-review

173 Downloads (Pure)

Abstract

BACKGROUND: Ventilator resetting is frequently needed to adjust tidal volume, pressure and gas exchange. The system comprising lungs and ventilator is so complex that a trial and error strategy is often applied. Comprehensive characterization of lung physiology is feasible by monitoring. The hypothesis that the effect of ventilator resetting could be predicted by computer simulation based on a physiological profile was tested in healthy pigs. METHODS: Flow, pressure and CO2 signals were recorded in 7 ventilated pigs. Elastic recoil pressure was measured at postinspiratory and post-expiratory pauses. Inspiratory and expiratory resistance as a function of volume and compliance were calculated. CO2 elimination per breath was expressed as a function of tidal volume. Calculating pressure and flow moment by moment simulated the effect of ventilator action, when respiratory rate was varied between 10 and 30 min(-1) and minute volume was changed so as to maintain PaCO2. Predicted values of peak airway pressure, plateau pressure, and CO2 elimination were compared to values measured after resetting. RESULTS: With 95% confidence, predicted pressures and CO2 elimination deviated from measured values with < 1 cm H2O and < 6%, respectively. CONCLUSION: It is feasible to predict effects of ventilator resetting on the basis of a physiological profile at least in health.
Original languageEnglish
Pages (from-to)289-296
JournalActa Anaesthesiologica Scandinavica
Volume46
Issue number3
DOIs
Publication statusPublished - 2002

Subject classification (UKÄ)

  • Anesthesiology and Intensive Care

Free keywords

  • Signal Processing
  • Respiratory Mechanics
  • Artificial
  • Respiration
  • Lung Compliance
  • Human
  • Computer Simulation
  • Carbon Dioxide : analysis
  • Breath Tests
  • Animal
  • Airway Resistance
  • Anesthesia
  • Computer-Assisted
  • Support
  • Non-U.S. Gov't
  • Swine
  • Therapy

Fingerprint

Dive into the research topics of 'Computer-aided ventilator resetting is feasible on the basis of a physiological profile.'. Together they form a unique fingerprint.

Cite this