Computing Garsia entropy for Bernoulli convolutions with algebraic parameters

Kevin G. Hare, Tom Kempton, Tomas Persson, Nikita Sidorov

Research output: Contribution to journalArticlepeer-review

Abstract

We introduce a parameter space containing all algebraic integers β ∈ (1, 2] that are not Pisot or Salem numbers, and a sequence of increasing piecewise continuous function on this parameter space which gives a lower bound for the Garsia entropy of the Bernoulli convolution ν β . This allows us to show that dimH(ν β ) = 1 for all β with representations in certain open regions of the parameter space.

Original languageEnglish
Pages (from-to)4744-4763
Number of pages20
JournalNonlinearity
Volume34
Issue number7
DOIs
Publication statusPublished - 2021

Subject classification (UKÄ)

  • Mathematics

Free keywords

  • algebraic numbers
  • Bernoulli convolutions
  • Hausdorff dimension

Fingerprint

Dive into the research topics of 'Computing Garsia entropy for Bernoulli convolutions with algebraic parameters'. Together they form a unique fingerprint.

Cite this