Abstract
We introduce a parameter space containing all algebraic integers β ∈ (1, 2] that are not Pisot or Salem numbers, and a sequence of increasing piecewise continuous function on this parameter space which gives a lower bound for the Garsia entropy of the Bernoulli convolution ν β . This allows us to show that dimH(ν β ) = 1 for all β with representations in certain open regions of the parameter space.
Original language | English |
---|---|
Pages (from-to) | 4744-4763 |
Number of pages | 20 |
Journal | Nonlinearity |
Volume | 34 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2021 |
Subject classification (UKÄ)
- Mathematics
Free keywords
- algebraic numbers
- Bernoulli convolutions
- Hausdorff dimension