Conceptual Design of a Mid-Sized Semi-Closed Oxy-Fuel Combustion Combined Cycle

Majed Sammak, Klas Jonshagen, Marcus Thern, Magnus Genrup, Egill Thorbergsson, Tomas Gronstedt, Adrian Dahlquist

Research output: Chapter in Book/Report/Conference proceedingPaper in conference proceedingpeer-review

Abstract

This paper presents the study of a mid-sized semi-closed oxy-fuel combustion combined cycle (SCOC-CC) with net power output around 108 MW. The paper describes not only the power balance and the performance of the SCOC-CC, but also the conceptual design of the SCOC turbine and compressor. A model has been built in the commercial heat and mass balance code IPSEpro to estimate the efficiency of semi-closed dual-pressure oxy-fuel combustion combined cycle using natural gas as a fuel. In order to obtain the real physical properties of the working fluids in IPSEpro, the code was linked to the NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP). The oxy-fuel turbine was modeled with the in-house Lund University package LUAX-T. Important features such as stage loading, loss modeling, cooling and geometric features were included to generate more accurate results. The oxy-fuel compressor has been modeled using a Chalmers university in-house tool for conceptual design of axial compressors. The conceptual design of the SCOC-CC process has a net efficiency of 47 %. The air separation unit and CO2 compression reduce the cycle efficiency by 10 and 2 percentage points, respectively. A single-shaft configuration was selected for the gas turbine simplicity. The rotational speed chosen was 5200 rpm and the turbine was designed with four stages. All stage preliminary design parameters are within ranges of established industrial axial turbine design limits. The main issue is the turbine exit Mach number; the stage must be lightly loaded in terms of pressure ratio to maintain the exit Mach number below 0.6. The compressor is designed with 18 stages. The current value of the product of the annulus area and the blade rotational speed squared (AN(2)) was calculated and found to be 40.10(6).
Original languageEnglish
Title of host publicationProceedings of the Asme Turbo Expo 2011, Vol 4
PublisherAmerican Society Of Mechanical Engineers (ASME)
Pages253-261
Volume4
ISBN (Print)978-0-7918-5464-8
DOIs
Publication statusPublished - 2012
EventASME 2011 Turbo Expo: Turbine Technical Conference and Exposition - Vancouver, Canada
Duration: 2011 Jun 62011 Jun 10

Publication series

Name
Volume4

Conference

ConferenceASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
Country/TerritoryCanada
CityVancouver
Period2011/06/062011/06/10

Subject classification (UKÄ)

  • Energy Engineering

Free keywords

  • SCOC-CC
  • Oxy fuel
  • gas turbine
  • mid-sized dual pressure combined cycle
  • CO2

Fingerprint

Dive into the research topics of 'Conceptual Design of a Mid-Sized Semi-Closed Oxy-Fuel Combustion Combined Cycle'. Together they form a unique fingerprint.

Cite this