TY - JOUR
T1 - Consensus HIV-1 subtype A integrase and its raltegravir-resistant variants: Design and characterization of the enzymatic properties.
AU - Shadrina, Olga
AU - Krotova, Olga
AU - Agapkina, Julia
AU - Knyazhanskaya, Ekaterina
AU - Korolev, Sergey
AU - Starodubova, Elizaveta
AU - Viklund, Alecia
AU - Lukashov, Vladimir
AU - Magnani, Mauro
AU - Medstrand, Patrik
AU - Karpov, Vadim
AU - Gottikh, Marina
AU - Isaguliants, Maria
PY - 2014
Y1 - 2014
N2 - Model studies of the subtype B and non-subtype B integrases are still required to compare their susceptibility to antiretroviral drugs, evaluate the significance of resistance mutations and identify the impact of natural polymorphisms on the level of enzymatic reactivity. We have therefore designed the consensus integrase of the HIV-1 subtype A strain circulating in the former Soviet Union territory (FSU-A) and two of its variants with mutations of resistance to the strand transfer inhibitor raltegravir. Their genes were synthesized, and expressed in E coli; corresponding His-tagged proteins were purified using the affinity chromatography. The enzymatic properties of the consensus integrases and their sensitivity to raltegravir were examined in a series of standard in vitro reactions and compared to the properties of the integrase of HIV-1 subtype B strain HXB2. The consensus enzyme demonstrated similar DNA-binding properties, but was significantly more active than HXB-2 integrase in the reactions of DNA cleavage and integration. All integrases were equally susceptible to inhibition by raltegravir and elvitegravir, indicating that the sporadic polymorphisms inherent to the HXB-2 enzyme have little effect on its susceptibility to drugs. Insensitivity of the mutated enzymes to the inhibitors of strand transfer occurred at a cost of a 30-90% loss of the efficacies of both 3'-processing and strand transfer. This is the first study to describe the enzymatic properties of the consensus integrase of HIV-1 clade A and the effects of the resistance mutations when the complex actions of sporadic sequence polymorphisms are excluded.
AB - Model studies of the subtype B and non-subtype B integrases are still required to compare their susceptibility to antiretroviral drugs, evaluate the significance of resistance mutations and identify the impact of natural polymorphisms on the level of enzymatic reactivity. We have therefore designed the consensus integrase of the HIV-1 subtype A strain circulating in the former Soviet Union territory (FSU-A) and two of its variants with mutations of resistance to the strand transfer inhibitor raltegravir. Their genes were synthesized, and expressed in E coli; corresponding His-tagged proteins were purified using the affinity chromatography. The enzymatic properties of the consensus integrases and their sensitivity to raltegravir were examined in a series of standard in vitro reactions and compared to the properties of the integrase of HIV-1 subtype B strain HXB2. The consensus enzyme demonstrated similar DNA-binding properties, but was significantly more active than HXB-2 integrase in the reactions of DNA cleavage and integration. All integrases were equally susceptible to inhibition by raltegravir and elvitegravir, indicating that the sporadic polymorphisms inherent to the HXB-2 enzyme have little effect on its susceptibility to drugs. Insensitivity of the mutated enzymes to the inhibitors of strand transfer occurred at a cost of a 30-90% loss of the efficacies of both 3'-processing and strand transfer. This is the first study to describe the enzymatic properties of the consensus integrase of HIV-1 clade A and the effects of the resistance mutations when the complex actions of sporadic sequence polymorphisms are excluded.
U2 - 10.1016/j.biochi.2014.02.013
DO - 10.1016/j.biochi.2014.02.013
M3 - Article
C2 - 24594066
VL - 102C
SP - 92
EP - 101
JO - Biochimie
JF - Biochimie
SN - 1638-6183
IS - Mar 2
ER -