Constrained Multilinear Detection and Generalized Graph Motifs

Andreas Björklund, Petteri Kaski, Lukasz Kowalik

Research output: Contribution to journalArticlepeer-review

Abstract

We introduce a new algebraic sieving technique to detect constrained multilinear monomials in multivariate polynomial generating functions given by an evaluation oracle. The polynomials are assumed to have coefficients from a field of characteristic two. As applications of the technique, we show an O^∗(2^k)-time polynomial space algorithm for the k-sized Graph Motif problem. We also introduce a new optimization variant of the problem, called Closest Graph Motif and solve it within the same time bound. The Closest Graph Motif problem encompasses several previously studied optimization variants, like Maximum Graph Motif, Min-Substitute Graph Motif, and Min-Add Graph Motif. Finally, we provide a piece of evidence that our result might be essentially tight: the existence of an O^∗((2−ϵ)^k)-time algorithm for the Graph Motif problem implies an O((2−ϵ′)^n)-time algorithm for Set Cover.
Original languageEnglish
Pages (from-to)947-967
JournalAlgorithmica
Volume74
Issue number2
DOIs
Publication statusPublished - 2016

Subject classification (UKÄ)

  • Computer Sciences

Fingerprint

Dive into the research topics of 'Constrained Multilinear Detection and Generalized Graph Motifs'. Together they form a unique fingerprint.

Cite this