Abstract
CuInSe2 (CISe) quantum dots (QDs) have shown promising applications in photoelectrochemical (PEC) cells due to their nontoxicity, high extinction coefficient, and wide optical absorption range; however, their low PEC performance prevents their applications due to insufficient charge carrier separation and severe charge recombination. Herein, CISe/CuInS2 (CISe/CIS) core/shell structured QDs are designed and constructed to promote charge separation and diminish interface defects. Afterward, the copper vacancy (VCu) state of CISe/CIS QDs is enriched by modulating the precursor molar ratios of In/Cu. Therefore, the radiative recombination of the conduction band edge electrons with the VCu localized holes becomes dominant and prolongs the carrier lifetime compared with intrinsic band-to-band recombination, thus promoting charge separation. Consequently, the VCu-rich CISe/CIS QD-based photoanode shows a high photocurrent density of 8.0 mA cm−2, which is one of the highest values reported for CISe QD-based PEC cells. This work provides an effective approach for promoting charge carrier separation and transfer through surface or intrinsic defect mediation for PEC applications of I–III–VI semiconductor nanocrystals.
Original language | English |
---|---|
Pages (from-to) | 134-142 |
Number of pages | 9 |
Journal | SCIENCE CHINA Materials |
Volume | 67 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2024 Jan |
Subject classification (UKÄ)
- Condensed Matter Physics
Free keywords
- charge separation
- copper vacancy
- CuInSe/CuInS core/shell quantum dots
- photoelectrochemical cells
- recombination