Contractility, ventriculoarterial coupling, and stroke work after acute myocardial infarction using CMR-derived pressure-volume loop data

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Noninvasive left ventricular (LV) pressure-volume (PV) loops derived by cardiac magnetic resonance (CMR) have recently been shown to enable characterization of cardiac hemodynamics. Thus, such PV loops could potentially provide additional diagnostic information such as contractility, arterial elastance (Ea) and stroke work (SW) currently not available in clinical routine. This study sought to investigate to what extent PV-loop variables derived with a novel noninvasive method can provide incremental physiological information over cardiac dimensions and blood pressure in patients with acute myocardial infarction (MI). Methods: A total of 100 patients with acute MI and 75 controls were included in the study. All patients underwent CMR 2?6 days after MI including assessment of myocardium at risk (MaR) and infarct size (IS). Noninvasive PV loops were generated from CMR derived LV volumes and brachial blood pressure measurements. The following variables were quantified: Maximal elastance (Emax) reflecting contractility, Ea, ventriculoarterial coupling (Ea/Emax), SW, potential energy, external power, energy per ejected volume, and efficiency. Results: All PV-loop variables were significantly different in MI patients compared to healthy volunteers, including contractility (Emax: 1.34?±?0.48 versus 1.50?±?0.41?mmHg/mL, p?=?.024), ventriculoarterial coupling (Ea/Emax: 1.27?±?0.61 versus 0.73?±?0.17, p?<?.001) and SW (0.96?±?0.32 versus 1.38?±?0.32?J, p?<?.001). These variables correlated to both MaR and IS (Emax: r2?=?0.25 and r2?=?0.29; Ea/Emax: r2?=?0.36 and r2?=?0.41; SW: r2?=?0.21 and r2?=?0.25). Conclusions: Noninvasive PV-loops provide physiological information beyond conventional diagnostic variables, such as ejection fraction, early after MI, including measures of contractility, ventriculoarterial coupling, and SW.
Original languageEnglish
Article numbere24216
Pages (from-to)1-9
JournalClinical Cardiology
Volume47
Issue number1
DOIs
Publication statusPublished - 2024 Jan 16

Subject classification (UKÄ)

  • Cardiac and Cardiovascular Systems

Free keywords

  • contractility
  • coupling
  • efficiency
  • elastance
  • myocardium at risk
  • stroke work

Fingerprint

Dive into the research topics of 'Contractility, ventriculoarterial coupling, and stroke work after acute myocardial infarction using CMR-derived pressure-volume loop data'. Together they form a unique fingerprint.

Cite this