Count Me In! Extendability for Threshold Ring Signatures

Diego F. Aranha, Mathias Hall-Andersen, Anca Nitulescu, Elena Pagnin, Sophia Yakoubov

Research output: Chapter in Book/Report/Conference proceedingPaper in conference proceedingpeer-review

Abstract

Ring signatures enable a signer to sign a message on behalf of a group anonymously, without revealing her identity. Similarly, threshold ring signatures allow several signers to sign the same message on behalf of a group; while the combined signature reveals that some threshold t of the group members signed the message, it does not leak anything else about the signers’ identities. Anonymity is a central feature in threshold ring signature applications, such as whistleblowing, e-voting and privacy-preserving cryptocurrencies: it is often crucial for signers to remain anonymous even from their fellow signers. When the generation of a signature requires interaction, this is difficult to achieve. There exist threshold ring signatures with non-interactive signing—where signers locally produce partial signatures which can then be aggregated—but a limitation of existing threshold ring signature constructions is that all of the signers must agree on the group on whose behalf they are signing, which implicitly assumes some coordination amongst them. The need to agree on a group before generating a signature also prevents others—from outside that group—from endorsing a message by adding their signature to the statement post-factum. We overcome this limitation by introducing extendability for ring signatures, same-message linkable ring signatures, and threshold ring signatures. Extendability allows an untrusted third party to take a signature, and extend it by enlarging the anonymity set to a larger set. In the extendable threshold ring signature, two signatures on the same message which have been extended to the same anonymity set can then be combined into one signature with a higher threshold. This enhances signers’ anonymity, and enables new signers to anonymously support a statement already made by others. For each of those primitives, we formalize the syntax and provide a meaningful security model which includes different flavors of anonymous extendability. In addition, we present concrete realizations of each primitive and formally prove their security relying on signatures of knowledge and the hardness of the discrete logarithm problem. We also describe a generic transformation to obtain extendable threshold ring signatures from same-message-linkable extendable ring signatures. Finally, we implement and benchmark our constructions.

Original languageEnglish
Title of host publicationPublic-Key Cryptography - PKC 2022
Subtitle of host publication25th IACR International Conference on Practice and Theory of Public-Key Cryptography, Proceedings, Part II
EditorsGoichiro Hanaoka, Junji Shikata, Yohei Watanabe
PublisherSpringer
Pages379-406
Number of pages28
ISBN (Electronic)9783030971311
ISBN (Print)9783030971304
DOIs
Publication statusPublished - 2022
Event25th IACR International Conference on Practice and Theory of Public-Key Cryptography, PKC 2022 - Virtual, Online
Duration: 2022 Mar 82022 Mar 11

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
PublisherSpringer
Volume13178
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference25th IACR International Conference on Practice and Theory of Public-Key Cryptography, PKC 2022
CityVirtual, Online
Period2022/03/082022/03/11

Subject classification (UKÄ)

  • Computer Science

Free keywords

  • Anonymity
  • Extendability
  • Threshold ring signatures

Fingerprint

Dive into the research topics of 'Count Me In! Extendability for Threshold Ring Signatures'. Together they form a unique fingerprint.

Cite this