Crystal Phase-Dependent Nanophotonic Resonances in InAs Nanowire Arrays

Nicklas Anttu, Sebastian Lehmann, Kristian Storm, Kimberly Dick Thelander, Lars Samuelson, Phillip Wu, Mats-Erik Pistol

Research output: Contribution to journalArticlepeer-review

Abstract

Nanostructures have many material, electronic, and optical properties that are not found in bulk systems and that are relevant for technological applications. For example, nanowires realized from III-V semiconductors can be grown into wurtzite crystal structure. This crystal structure does not naturally exist in bulk where these materials form the zinc-blende counterpart. Being able to concomitantly grow these nanowires in the zinc-blende and/or wurtzite crystal structure prlovides an important degree of control for the design and optimization of optoelectronic applications based on these semiconductor nanostructures. However, the refractive indices of this new crystallographic phase have so far not been elucidated. This shortcoming makes it impossible to predict and utilize he full potential of these new nanostructured materials for optoelectronics applications a careful design and optimization of optical resonances by tuning the nanostrucuted geometry is needed to achieve optimal performance. Here, we report and analyze striking differeences in the optical response of nanophotonic resonances in wurtzite and zinc-blend InAs nanowire arrays. Specifically, through reflectance measurements we find that the resonance can be tuned down to lambda approximate to 380 nm in wurtzite nanowires by decreasing the nanowire diameter. In stark contrast, a similar tuning to below approximate to 500 nm is not possible in the zinc-blende nanowires. Furthermore, we find that the wurtzite nanowires can absorb twice as strongly as the zinc-blende nanowires. We attribute these strikingly large differences in resonant behavior to large differences between the refractive indices of the two crystallographic phases realized in these nanostructures. We anticipate our finding to be relevant for other III-B materials as well as for all material systems that manifest polytypism. Taken together, our results demonstrate crystal phase engineering as a potentially new design dimension for optoelectronics applications.
Original languageEnglish
Pages (from-to)5650-5655
JournalNano Letters
Volume14
Issue number10
DOIs
Publication statusPublished - 2014

Subject classification (UKÄ)

  • Nano Technology
  • Condensed Matter Physics

Free keywords

  • InAs nanowire array
  • nanophotonic resonance
  • zinc-blende
  • wurtzite

Fingerprint

Dive into the research topics of 'Crystal Phase-Dependent Nanophotonic Resonances in InAs Nanowire Arrays'. Together they form a unique fingerprint.

Cite this