Cutting Tool Fracture Prediction and Strength Evaluation by Stress Identification Part I: Stress Model

Research output: Contribution to journalArticlepeer-review

20 Citations (SciVal)

Abstract

Cutting tool premature failure, caused by tool fracture and chipping, is a frequent problem in the metal cutting area. For a certain type of cutting tool, correctly identifying its load profile and property profile is very crucial for prediction of the tool premature failure. The most direct way to evaluate the load profile and property profile of a cutting tool is to identify the stress working on it. This paper presents a new method for identification of the maximum principal stress and maximum effective stress subjected to a cutting tool in a cutting process. The method consists of four steps: estimation of the contact load on the tool faces, calculation of the maximum related stresses with the FEM, modelling of maximum related stresses with an artificial neural network and, finally, identification of the maximum principal stress, σe, and maximum effective stress, σe, with the use of measured cutting forces or cutting parameters. The calculation of the contact load on the tool face is based on a simplification of the load distribution on the tool face. Part I of the paper will present this method and Part II will present the results of experimental studies.
Original languageEnglish
Pages (from-to)1691-1714
JournalInternational Journal of Machine Tools & Manufacture
Volume37
Issue number12
DOIs
Publication statusPublished - 1997

Subject classification (UKÄ)

  • Materials Engineering

Fingerprint

Dive into the research topics of 'Cutting Tool Fracture Prediction and Strength Evaluation by Stress Identification Part I: Stress Model'. Together they form a unique fingerprint.

Cite this