Cyclic AMP Concentrations in Rat Neocortex and Hippocampus During and Following Incomplete Ischemia: Effects of Central Noradrenergic Neurons, Prostaglandins, and Adenosine

Photjanee Blomqvist, Olle Lindvall, Ulf Stenevi, Tadeusz Wieloch

Research output: Contribution to journalArticlepeer-review

Abstract

Abstract: The concentrations of cyclic AMP, noradrenaline, glycogen, glucose, lactate, pyruvate, labile phosphate compounds, and free fatty acids were investigated in the rat neocortex and hippocampus during and following cerebral ischemia. An incomplete ischemia of 5 and 15 min duration was induced by bilateral carotid clamping combined with hypotension. The postischemic events were studied after 5, 15, and 60 min of recirculation. Five minutes of ischemia did not significantly alter the neocortical or hippocampal concentrations of cyclic AMP. After 15 min of ischemia the neocortical levels decreased significantly below control values. In the recirculation period following ischemia a significant elevation of the cyclic AMP concentrations was observed. Following 5 min of recirculation after 5 min of ischemia the levels increased from 2.53 ± 0.21 nmol ± g−1 to 5.18 ± 0.09 nmol ± g−1 in the neocortex and from 2.14 ± 0.16 nmol ± g−1 to 3.52 ± 0.35 nmol ± g−1 in the hippocampus. Five minutes of recirculation following 15 min of ischemia led to a significant increase in the levels of cyclic AMP, to 12.86 ± 1.43 nmol ± g−1 in the neocortex to 5.58 ± 0.57 nmol ± g−1 in the hippocampus. With longer recirculation periods the cyclic AMP levels progressively decreased and were similar to control values after 60 min. Depletion of cortical noradrenaline by at least 95% was performed by injections of 6‐hydroxydopamine into the ascending axon bundles from the locus ceruleus. The lesion did not significantly change the ischemic or postischemic neocortical and hippocampal levels of cyclic AMP, glycogen, or free fatty acids including arachidonic acid. Treatment of the animals with theophyllamine (23, 46, and 92 mg ± kg−1) or indomethacin (10 mg ± kg−1) did not affect the postischemic levels of cyclic AMP. It is concluded that central noradrenergic neurons, prostaglandins, and adenosine are not of major importance for the observed postischemic elevations of cyclic AMP and that the changes in the concentrations of free fatty acids measured during and following ischemia are not mediated by noradrenergic neurons.

Original languageEnglish
Pages (from-to)1345-1353
Number of pages9
JournalJournal of Neurochemistry
Volume44
Issue number5
DOIs
Publication statusPublished - 1985 Jan 1

Subject classification (UKÄ)

  • Neurosciences

Free keywords

  • Cyclic AMP
  • Energy metabolism
  • Free fatty acids
  • Hippocampus
  • Indomethacin
  • Ischemia
  • Neocortex
  • Noradrenaline

Fingerprint

Dive into the research topics of 'Cyclic AMP Concentrations in Rat Neocortex and Hippocampus During and Following Incomplete Ischemia: Effects of Central Noradrenergic Neurons, Prostaglandins, and Adenosine'. Together they form a unique fingerprint.

Cite this