Abstract
Cyclic chiral lactide is the monomer chemical for polymerization of high molecular weight polylactic acid (PLA). The synthesis of cyclic l-lactide starts from poly-condensation of l-lactic acid to a low molecular weight prepolymer and then depolymerized to cyclic l-lactide. Lignocellulose biomass is the most promising carbohydrate feedstock for lactic acid production, but the synthesis of cyclic l-lactide from l-lactic acid produced from lignocellulose has so far not been successful. The major barriers are the impurities of residual sugars and inhibitors in the crude cellulosic l-lactic acid product. Here we show a successful cyclic l-lactide synthesis from cellulosic l-lactic acid by lignocellulose biorefining with complete inhibitor removal and coordinated sugars assimilation. The removal of inhibitors from lignocellulose pretreatment was accomplished by biodetoxification using a unique fungus Amorphotheca resinae ZN1. The nonglucose sugars were completely and simultaneously assimilated at the same rate with glucose by the engineered l-lactic acid bacterium Pediococcus acidilactici. The l-lactic acid production from wheat straw was comparable to that from corn starch with high optical pure (99.6%), high l-lactic acid titer (129.4 g/L), minor residual total sugars (~2.2 g/L), and inhibitors free. The cyclic l-lactide was successfully synthesized from the regularly purified l-lactic acid and verified by detailed characterizations. This study paves the technical foundation of carbon-neutral production of biodegradable PLA from lignocellulose biomass.
Original language | English |
---|---|
Pages (from-to) | 1903-1915 |
Journal | Biotechnology and Bioengineering |
Volume | 119 |
Issue number | 7 |
Early online date | 2022 |
DOIs | |
Publication status | Published - 2022 |
Subject classification (UKÄ)
- Bioprocess Technology
Free keywords
- biodetoxification
- cellulose l-lactic acid
- cyclic l-lactide
- inhibitor
- nonglucose sugars
- Pediococcus acidilactici