TY - JOUR
T1 - CYLD controls c-MYC expression through the JNK-dependent signaling pathway in hepatocellular carcinoma.
AU - Rajeswara, Pannem Rao
AU - Dorn, Christoph
AU - Ahlqvist, Kristofer
AU - Bosserhoff, Anja K
AU - Hellerbrand, Claus
AU - Massoumi, Ramin
PY - 2014
Y1 - 2014
N2 - Post-translational modification of different proteins via direct ubiquitin attachment is vital for mediating various cellular processes. CYLD, a deubiquitination enzyme, is able to cleave the polyubiquitin chains from the substrate, and to regulate different signaling pathways. Loss, or reduced expression, of CYLD is observed in different types of human cancer, such as hepatocellular carcinoma (HCC). However, the molecular mechanism by which CYLD affects cancerogenesis has to date not been unveiled. The aim of the present study was to examine how CYLD regulates cellular functions and signaling pathways during hepatocancerogenesis. We found that mice lacking CYLD were highly susceptible to chemically induced liver cancer. The mechanism behind proved to be an elevated proliferation rate of hepatocytes, owing to sustained JNK1-mediated signaling via ubiquitination of TRAF2 and expression of c-MYC. Overexpression of wild type CYLD in an HCC cell lines prevented cell proliferation, without affecting apoptosis, adhesion, and migration. A combined immunohistochemical and tissue microarray analysis of 81 human HCC tissues revealed that CYLD expression is negatively correlated with expression of proliferation marker Ki-67 and c-MYC. To conclude, we found that downregulation of CYLD induces tumor cell proliferation, consequently contributing to the aggressive growth of HCC. Our findings suggest that CYLD holds potential to serve as a marker for HCC progression, and its link to c-MYC via JNK1 may provide the foundation for new therapeutic strategies for HCC-patients.
AB - Post-translational modification of different proteins via direct ubiquitin attachment is vital for mediating various cellular processes. CYLD, a deubiquitination enzyme, is able to cleave the polyubiquitin chains from the substrate, and to regulate different signaling pathways. Loss, or reduced expression, of CYLD is observed in different types of human cancer, such as hepatocellular carcinoma (HCC). However, the molecular mechanism by which CYLD affects cancerogenesis has to date not been unveiled. The aim of the present study was to examine how CYLD regulates cellular functions and signaling pathways during hepatocancerogenesis. We found that mice lacking CYLD were highly susceptible to chemically induced liver cancer. The mechanism behind proved to be an elevated proliferation rate of hepatocytes, owing to sustained JNK1-mediated signaling via ubiquitination of TRAF2 and expression of c-MYC. Overexpression of wild type CYLD in an HCC cell lines prevented cell proliferation, without affecting apoptosis, adhesion, and migration. A combined immunohistochemical and tissue microarray analysis of 81 human HCC tissues revealed that CYLD expression is negatively correlated with expression of proliferation marker Ki-67 and c-MYC. To conclude, we found that downregulation of CYLD induces tumor cell proliferation, consequently contributing to the aggressive growth of HCC. Our findings suggest that CYLD holds potential to serve as a marker for HCC progression, and its link to c-MYC via JNK1 may provide the foundation for new therapeutic strategies for HCC-patients.
U2 - 10.1093/carcin/bgt335
DO - 10.1093/carcin/bgt335
M3 - Article
C2 - 24104553
SN - 0143-3334
VL - 35
SP - 461
EP - 468
JO - Carcinogenesis
JF - Carcinogenesis
IS - 2
ER -