Deciphering the temporal heterogeneity of cancer-associated fibroblast subpopulations in breast cancer

Freja Albjerg Venning, Kamilla Westarp Zornhagen, Lena Wullkopf, Jonas Sjölund, Carmen Rodriguez-Cupello, Pontus Kjellman, Mikkel Morsing, Morteza Chalabi Hajkarim, Kyoung Jae Won, Janine Terra Erler, Chris Denis Madsen

Research output: Contribution to journalArticlepeer-review

Abstract

Background
Cancer-associated fibroblasts (CAFs) comprise a heterogeneous population of stromal cells within the tumour microenvironment. CAFs exhibit both tumour-promoting and tumour-suppressing functions, making them exciting targets for improving cancer treatments. Careful isolation, identification, and characterisation of CAF heterogeneity is thus necessary for ex vivo validation and future implementation of CAF-targeted strategies in cancer.

Methods
Murine 4T1 (metastatic) and 4T07 (poorly/non-metastatic) orthotopic triple negative breast cancer tumours were collected after 7, 14, or 21 days. The tumours were analysed via flow cytometry for the simultaneous expression of six CAF markers: alpha smooth muscle actin (αSMA), fibroblast activation protein alpha (FAPα), platelet derived growth factor receptor alpha and beta (PDGFRα and PDGFRβ), CD26/DPP4 and podoplanin (PDPN). All non-CAFs were excluded from the analysis using a lineage marker cocktail (CD24, CD31, CD45, CD49f, EpCAM, LYVE-1, and TER-119). In total 128 murine tumours and 12 healthy mammary fat pads were analysed.

Results
We have developed a multicolour flow cytometry strategy based on exclusion of non-CAFs and successfully employed this to explore the temporal heterogeneity of freshly isolated CAFs in the 4T1 and 4T07 mouse models of triple-negative breast cancer. Analysing 128 murine tumours, we identified 5–6 main CAF populations and numerous minor ones based on the analysis of αSMA, FAPα, PDGFRα, PDGFRβ, CD26, and PDPN. All markers showed temporal changes with a distinct switch from primarily PDGFRα+ fibroblasts in healthy mammary tissue to predominantly PDGFRβ+ CAFs in tumours. CD26+ CAFs emerged as a large novel subpopulation, only matched by FAPα+ CAFs in abundance.

Conclusion
We demonstrate that multiple subpopulations of CAFs co-exist in murine triple negative breast cancer, and that the abundance and dynamics for each marker differ depending on tumour type and time. Our results form the foundation needed to isolate and characterise specific CAF populations, and ultimately provide an opportunity to therapeutically target specific CAF subpopulations.
Original languageEnglish
Article number175
Pages (from-to)1
Number of pages21
JournalJournal of Experimental and Clinical Cancer Research
Volume40
Issue number1
DOIs
Publication statusPublished - 2021 May 20

Subject classification (UKÄ)

  • Cancer and Oncology

Fingerprint

Dive into the research topics of 'Deciphering the temporal heterogeneity of cancer-associated fibroblast subpopulations in breast cancer'. Together they form a unique fingerprint.

Cite this