TY - GEN
T1 - Deep Reinforcement Learning for Active Human Pose Estimation
AU - Gärtner, Erik
AU - Pirinen, Aleksis
AU - Sminchisescu, Cristian
PY - 2020/4/3
Y1 - 2020/4/3
N2 - Most 3d human pose estimation methods assume that input – be it images of a scene collected from one or several viewpoints, or from a video – is given. Consequently, they focus on estimates leveraging prior knowledge and measurement by fusing information spatially and/or temporally, whenever available. In this paper we address the problem of an active observer with freedom to move and explore the scene spatially – in ‘time-freeze’ mode – and/or temporally, by selecting informative viewpoints that improve its estimation accuracy. Towards this end, we introduce Pose-DRL, a fully trainable deep reinforcement learning-based active pose estimation architecture which learns to select appropriate views, in space and time, to feed an underlying monocular pose estimator. We evaluate our model using single- and multi-target estimators with strong result in both settings. Our system further learns automatic stopping conditions in time and transition functions to the next temporal processing step in videos. In extensive experiments with the Panoptic multi-view setup, and for complex scenes containing multiple people, we show that our model learns to select viewpoints that yield significantly more accurate pose estimates compared to strong multi-view baselines.
AB - Most 3d human pose estimation methods assume that input – be it images of a scene collected from one or several viewpoints, or from a video – is given. Consequently, they focus on estimates leveraging prior knowledge and measurement by fusing information spatially and/or temporally, whenever available. In this paper we address the problem of an active observer with freedom to move and explore the scene spatially – in ‘time-freeze’ mode – and/or temporally, by selecting informative viewpoints that improve its estimation accuracy. Towards this end, we introduce Pose-DRL, a fully trainable deep reinforcement learning-based active pose estimation architecture which learns to select appropriate views, in space and time, to feed an underlying monocular pose estimator. We evaluate our model using single- and multi-target estimators with strong result in both settings. Our system further learns automatic stopping conditions in time and transition functions to the next temporal processing step in videos. In extensive experiments with the Panoptic multi-view setup, and for complex scenes containing multiple people, we show that our model learns to select viewpoints that yield significantly more accurate pose estimates compared to strong multi-view baselines.
U2 - 10.1609/aaai.v34i07.6714
DO - 10.1609/aaai.v34i07.6714
M3 - Paper in conference proceeding
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 10835
EP - 10844
BT - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PB - The Association for the Advancement of Artificial Intelligence
T2 - 34th AAAI Conference on Artificial Intelligence, AAAI 2020
Y2 - 7 February 2020 through 12 February 2020
ER -