Designing future prebiotic fiber to target the metabolic syndrome.

Greta Jakobsdottir, Margareta Nyman, Frida Fåk

Research output: Contribution to journalReview articlepeer-review

34 Citations (SciVal)

Abstract

The metabolic syndrome (MetS), characterized by obesity, hyperlipidemia, hypertension, and insulin resistance, is a growing epidemic worldwide, requiring new prevention strategies and therapeutics. The concept of prebiotics refers to selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) health benefits to the host. Sequencing the gut microbiome and performing metagenomics has provided new knowledge of the significance of the composition and activity of the gut microbiota in metabolic disease. As knowledge of how a healthy gut microbiota is composed and which bacterial metabolites are beneficial increases, tailor-made dietary interventions using prebiotic fibers could be developed for individuals with MetS. In this review, we describe how dietary fibers alter short-chain fatty acid (SCFA) profiles and the intrinsic and extrinsic effects of prebiotics on host metabolism. We focus on several key aspects in prebiotic research in relation to MetS and provide mechanistic data that support the use of prebiotic fibers in order to alter the gut microbiota composition and SCFA profiles. Further studies in the field should provide reliable mechanistic and clinical evidence for how prebiotics can be used to alleviate MetS and its complications. Additionally, it will be important to clarify the effect of individual differences in the gut microbiome on responsiveness to prebiotic interventions.
Original languageEnglish
Pages (from-to)497-502
JournalNutrition
Volume30
Issue number5
DOIs
Publication statusPublished - 2014

Bibliographical note

The information about affiliations in this record was updated in December 2015.
The record was previously connected to the following departments: Applied Nutrition and Food Chemistry (011001300)

Subject classification (UKÄ)

  • Nutrition and Dietetics

Fingerprint

Dive into the research topics of 'Designing future prebiotic fiber to target the metabolic syndrome.'. Together they form a unique fingerprint.

Cite this