Abstract
Methods. Linear regression was used to relate log-measured GFR (mGFR) to sex, race, diabetes, transplant, weight, various transformations of creatinine and age with and without interactions. Equations were developed in a pooled database of 10 studies [2/3 (N = 5504) for development and 1/3 (N = 2750) for internal validation], and final model selection occurred in 16 additional studies [external validation (N = 3896)]. Results. The mean mGFR was 68, 67 and 68 ml/min/ 1.73 m(2) in the development, internal validation and external validation datasets, respectively. In external validation, an equation that included a linear age term and spline terms in creatinine to account for a reduction in the magnitude of the slope at low serum creatinine values exhibited the best performance (bias = 2.5, RMSE = 0.250) among models using the four basic predictor variables. Addition of terms for diabetes and transplant did not improve performance. Equations with weight showed a small improvement in the subgroup with BMI < 20 kg/m(2). Conclusions. The CKD-EPI equation, based on creatinine, age, sex and race, has been validated and is more accurate than the MDRD study equation. The addition of weight, diabetes and transplant does not significantly improve equation performance.
Original language | English |
---|---|
Pages (from-to) | 449-457 |
Journal | Nephrology Dialysis Transplantation |
Volume | 25 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2010 |
Subject classification (UKÄ)
- Urology and Nephrology
Free keywords
- rate
- validation
- glomerular filtration
- estimating equation
- creatinine
- development