TY - JOUR
T1 - Dielectron production at midrapidity at low transverse momentum in peripheral and semi-peripheral Pb–Pb collisions at √sNN = 5.02 TeV
AU - Acharya, S.
AU - Basu, S.
AU - Christiansen, P.
AU - Matonoha, O.
AU - Nassirpour, A.F.
AU - Ohlson, A.
AU - Oskarsson, A.
AU - Richert, T.
AU - Rueda, O.V.
AU - Silvermyr, D.
AU - Staa, J.
AU - Zurlo, N.
AU - ALICE Collaboration
PY - 2023
Y1 - 2023
N2 - The first measurement of the e+e− pair production at low lepton pair transverse momentum (p T,ee) and low invariant mass (m ee) in non-central Pb–Pb collisions at sNN = 5.02 TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity (|η e | < 0.8) as a function of invariant mass (0.4 ≤ m ee < 2.7 GeV/c 2) in the 50–70% and 70–90% centrality classes for p T,ee < 0.1 GeV/c, and as a function of p T,ee in three m ee intervals in the most peripheral Pb–Pb collisions. Below a p T,ee of 0.1 GeV/c, a clear excess of e+e− pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The m ee excess spectra are reproduced, within uncertainties, by different predictions of the photon–photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the p T,ee spectra. The measured 〈pT,ee2〉 of the excess p T,ee spectrum in peripheral Pb–Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region. [Figure not available: see fulltext.]. © 2023, The Author(s).
AB - The first measurement of the e+e− pair production at low lepton pair transverse momentum (p T,ee) and low invariant mass (m ee) in non-central Pb–Pb collisions at sNN = 5.02 TeV at the LHC is presented. The dielectron production is studied with the ALICE detector at midrapidity (|η e | < 0.8) as a function of invariant mass (0.4 ≤ m ee < 2.7 GeV/c 2) in the 50–70% and 70–90% centrality classes for p T,ee < 0.1 GeV/c, and as a function of p T,ee in three m ee intervals in the most peripheral Pb–Pb collisions. Below a p T,ee of 0.1 GeV/c, a clear excess of e+e− pairs is found compared to the expectations from known hadronic sources and predictions of thermal radiation from the medium. The m ee excess spectra are reproduced, within uncertainties, by different predictions of the photon–photon production of dielectrons, where the photons originate from the extremely strong electromagnetic fields generated by the highly Lorentz-contracted Pb nuclei. Lowest-order quantum electrodynamic (QED) calculations, as well as a model that takes into account the impact-parameter dependence of the average transverse momentum of the photons, also provide a good description of the p T,ee spectra. The measured 〈pT,ee2〉 of the excess p T,ee spectrum in peripheral Pb–Pb collisions is found to be comparable to the values observed previously at RHIC in a similar phase-space region. [Figure not available: see fulltext.]. © 2023, The Author(s).
KW - Jets and Jet Substructure
KW - Quark-Gluon Plasma
U2 - 10.1007/JHEP06(2023)024
DO - 10.1007/JHEP06(2023)024
M3 - Article
SN - 1029-8479
VL - 2023
JO - Journal of High Energy Physics
JF - Journal of High Energy Physics
IS - 6
M1 - 24
ER -