Dietary-based developmental plasticity affects juvenile survival in an aquatic detritivore

Moritz D. Lürig, Blake Matthews

Research output: Contribution to journalArticlepeer-review

Abstract

Developmental plasticity is ubiquitous in natural populations, but the underlying causes and fitness consequences are poorly understood. For consumers, nutritional variation of juvenile diets is probably associated with plasticity in developmental rates, but little is known about how diet quality can affect phenotypic trajectories in ways that might influence survival to maturity and lifetime reproductive output. Here, we tested how the diet quality of a freshwater detritivorous isopod (Asellus aquaticus), in terms of elemental ratios of diet (i.e. carbon: nitrogen: phosphorus; C: N: P), can affect (i) developmental rates of body size and pigmentation and (ii) variation in juvenile survival. We reared 1047 individuals, in a full-sib split-family design (29 families), on either a high- (low C: P, C: N) or low-quality (high C: P, C: N) diet, and quantified developmental trajectories of body size and pigmentation for every individual over 12 weeks. Our diet contrast caused strong divergence in the developmental rates of pigmentation but not growth, culminating in a distribution of adult pigmentation spanning the broad range of phenotypes observed both within and among natural populations. Under low-quality diet, we found highest survival at intermediate growth and pigmentation rates. By contrast, survival under high-quality diet survival increased continuously with pigmentation rate, with longest lifespans at intermediate growth rates and high pigmentation rates. Building on previous work which suggests that visual predation mediates the evolution of cryptic pigmentation in A. aquaticus, our study shows how diet quality and composition can generate substantial phenotypic variation by affecting rates of growth and pigmentation during development in the absence of predation.

Original languageEnglish
Article number20203136
Number of pages10
JournalProceedings of the Royal Society B: Biological Sciences
Volume288
Issue number1945
DOIs
Publication statusPublished - 2021 Feb 24

Bibliographical note

Publisher Copyright:
© 2021 The Author(s).

Subject classification (UKÄ)

  • Ecology
  • Evolutionary Biology

Free keywords

  • development
  • diet quality
  • fitness
  • life history
  • phenotypic plasticity
  • stoichiometry

Fingerprint

Dive into the research topics of 'Dietary-based developmental plasticity affects juvenile survival in an aquatic detritivore'. Together they form a unique fingerprint.

Cite this