Abstract
We examined the transduction efficiency of different adeno-associated virus (AAV) capsid serotypes encoding for green fluorescent protein (GFP) flanked by AAV2 inverted terminal repeats in the nonhuman primate basal ganglia as a prelude to translational studies, as well as clinical trials in patients with Parkinson's disease (PD). Six intact young adult cynomolgus monkeys received a single 10 mu l injection of AAV2/1-GFP, AAV2/5-GFP, or AAV2/8-GFP pseudotyped vectors into the caudate nucleus and putamen bilaterally in a pattern that resulted in each capsid serotype being injected into at least four striatal sites. GFP immunohistochemistry revealed excellent transduction rates for each AAV pseudotype. Stereological estimates of GFP(+) cells within the striatum revealed that AAV2/5-GFP transduces significantly higher number of cells than AAV2/8-GFP (P < 0.05) and there was no significant difference between AAV2/5-GFP and AAV2/1-GFP (P = 0.348). Consistent with this result, Cavalieri estimates revealed that AAV2/5-GFP resulted in a significantly larger transduction volume than AAV2/8-GFP (P < 0.05). Each pseudotype transduced striatal neurons effectively [>95% GFP(+) cells colocalized neuron-specific nuclear protein (NeuN)]. The current data suggest that AAV2/5 and AAV2/1 are superior to AAV2/8 for gene delivery to the nonhuman primate striatum and therefore better candidates for therapeutic applications targeting this structure.
Original language | English |
---|---|
Pages (from-to) | 579-587 |
Journal | Molecular Therapy |
Volume | 18 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2010 |
Subject classification (UKÄ)
- Medical Genetics