Abstract
Direct photon production at mid-rapidity in Pb–Pb collisions at sNN=2.76 TeV was studied in the transverse momentum range 0.9<pT<14 GeV/c. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the ALICE detector material with the e+e− pair reconstructed in the central tracking system. The results of the two methods were combined and direct photon spectra were measured for the 0–20%, 20–40%, and 40–80% centrality classes. For all three classes, agreement was found with perturbative QCD calculations for pT≳5 GeV/c. Direct photon spectra down to pT≈1 GeV/c could be extracted for the 20–40% and 0–20% centrality classes. The significance of the direct photon signal for 0.9<pT<2.1 GeV/c is 2.6σ for the 0–20% class. The spectrum in this pT range and centrality class can be described by an exponential with an inverse slope parameter of (297±12stat±41syst) MeV. State-of-the-art models for photon production in heavy-ion collisions agree with the data within uncertainties.
Original language | English |
---|---|
Pages (from-to) | 235-248 |
Number of pages | 14 |
Journal | Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics |
Volume | 754 |
DOIs | |
Publication status | Published - 2016 |
Subject classification (UKÄ)
- Subatomic Physics