TY - GEN
T1 - Docforia: A Multilayer Document Model
AU - Klang, Marcus
AU - Nugues, Pierre
PY - 2017
Y1 - 2017
N2 - In this paper, we describe Docforia, a multilayer document model and application programming interface (API) to store formatting, lexical, syntactic, and semantic annotations on Wikipedia and other kinds of text and visualize them. While Wikipedia has become a major NLP resource, its scale and heterogeneity makes it relatively difficult to do experimentations on the whole corpus. These experimentations are rendered even more complexas,to the best of our knowledge,there is no available tool to visualize easily the results of a processing pipeline. We designed Docforia so that it can store millions of documents and billions of tokens, annotated using different processing tools,that themselves use multiple formats, and compatible with cluster computing frameworks such as Hadoop or Spark. The annotation output, either partial or complete, can then be shared more easily. To validate Docforia, we processed six language versions of Wikipedia: English, French, German, Spanish, Russian, and Swedish, up to semantic role labeling, depending on the NLP tools available for a given language. We stored the results in our document model and we created a visualization tool to inspect the annotation results.
AB - In this paper, we describe Docforia, a multilayer document model and application programming interface (API) to store formatting, lexical, syntactic, and semantic annotations on Wikipedia and other kinds of text and visualize them. While Wikipedia has become a major NLP resource, its scale and heterogeneity makes it relatively difficult to do experimentations on the whole corpus. These experimentations are rendered even more complexas,to the best of our knowledge,there is no available tool to visualize easily the results of a processing pipeline. We designed Docforia so that it can store millions of documents and billions of tokens, annotated using different processing tools,that themselves use multiple formats, and compatible with cluster computing frameworks such as Hadoop or Spark. The annotation output, either partial or complete, can then be shared more easily. To validate Docforia, we processed six language versions of Wikipedia: English, French, German, Spanish, Russian, and Swedish, up to semantic role labeling, depending on the NLP tools available for a given language. We stored the results in our document model and we created a visualization tool to inspect the annotation results.
M3 - Paper in conference proceeding
T3 - Linköping Electronic Conference Proceedings
BT - Proceedings of the 21st Nordic Conference of Computational Linguistics
PB - Linköping University Electronic Press
T2 - 21st Nordic Conference of Computational Linguistics
Y2 - 23 May 2017 through 24 May 2017
ER -