TY - JOUR
T1 - Domain 5 of high molecular weight kininogen is antibacterial.
AU - Nordahl, Emma
AU - Rydengård, Victoria
AU - Mörgelin, Matthias
AU - Schmidtchen, Artur
PY - 2005
Y1 - 2005
N2 - Antimicrobial peptides are important effectors of the innate immune system. These peptides belong to a multifunctional group of molecules that apart from their antibacterial activities also interact with mammalian cells and glycosaminoglycans and control chemotaxis, apoptosis, and angiogenesis. Here we demonstrate a novel antimicrobial activity of the heparin-binding and cell-binding domain 5 of high molecular weight kininogen. Antimicrobial epitopes of domain 5 were characterized by analysis of overlapping peptides. A peptide, HKH20 (His(479) - His(498)), efficiently killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa and the Gram-positive Enterococcus faecalis. Fluorescence microscopy and electron microscopy demonstrated that HKH20 binds to and induces breaks in bacterial membranes. Furthermore, no discernible hemolysis or membrane-permeabilizing effects on eukaryotic cells were noted. Proteolytic degradation of high molecular weight kininogen by neutrophil-derived proteases as well as the metalloproteinase elastase from P. aeruginosa yielded fragments comprising HKH20 epitopes, indicating that kininogen-derived antibacterial peptides are released during proteolysis.
AB - Antimicrobial peptides are important effectors of the innate immune system. These peptides belong to a multifunctional group of molecules that apart from their antibacterial activities also interact with mammalian cells and glycosaminoglycans and control chemotaxis, apoptosis, and angiogenesis. Here we demonstrate a novel antimicrobial activity of the heparin-binding and cell-binding domain 5 of high molecular weight kininogen. Antimicrobial epitopes of domain 5 were characterized by analysis of overlapping peptides. A peptide, HKH20 (His(479) - His(498)), efficiently killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa and the Gram-positive Enterococcus faecalis. Fluorescence microscopy and electron microscopy demonstrated that HKH20 binds to and induces breaks in bacterial membranes. Furthermore, no discernible hemolysis or membrane-permeabilizing effects on eukaryotic cells were noted. Proteolytic degradation of high molecular weight kininogen by neutrophil-derived proteases as well as the metalloproteinase elastase from P. aeruginosa yielded fragments comprising HKH20 epitopes, indicating that kininogen-derived antibacterial peptides are released during proteolysis.
U2 - 10.1074/jbc.M507249200
DO - 10.1074/jbc.M507249200
M3 - Article
VL - 280
SP - 34832
EP - 34839
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 1083-351X
IS - 41
ER -