Abstract

X-ray fluorescence microscopy performed at nanofocusing synchrotron beamlines produces quantitative elemental distribution maps at unprecedented resolution (down to a few tens of nanometres), at the expense of relatively long measuring times and high absorbed doses. In this work, a method was implemented in which fast low-dose in-line holography was used to produce quantitative electron density maps at the mesoscale prior to nanoscale X-ray fluorescence acquisition. These maps ensure more efficient fluorescence scans and the reduction of the total absorbed dose, often relevant for radiation-sensitive (e.g. biological) samples. This multimodal microscopy approach was demonstrated on human sural nerve tissue. The two imaging modes provide complementary information at a comparable resolution, ultimately limited by the focal spot size. The experimental setup presented allows the user to swap between them in a flexible and reproducible fashion, as well as to easily adapt the scanning parameters during an experiment to fine-tune resolution and field of view.
Original languageEnglish
JournalJournal of Synchrotron Radiation
Volume29
Issue number3
DOIs
Publication statusPublished - 2022 Mar 16

Subject classification (UKÄ)

  • Atom and Molecular Physics and Optics
  • Radiology, Nuclear Medicine and Medical Imaging
  • Accelerator Physics and Instrumentation

Fingerprint

Dive into the research topics of 'Dose-efficient multimodal microscopy of human tissue at a hard X-ray nanoprobe beamline'. Together they form a unique fingerprint.

Cite this