TY - JOUR
T1 - ECG-based estimation of respiration-induced autonomic modulation of AV nodal conduction during atrial fibrillation
AU - Plappert, Felix
AU - Engström, Gunnar
AU - Platonov, Pyotr
AU - Wallman, Mikael
AU - Sandberg, Frida
PY - 2024/5/8
Y1 - 2024/5/8
N2 - Introduction: Information about autonomic nervous system (ANS) activity may offer insights about atrial fibrillation (AF) progression and support personalized AF treatment but is not easily accessible from the ECG. In this study, we propose a new approach for ECG-based assessment of respiratory modulation in atrioventricular (AV) nodal refractory period and conduction delay. Methods: A 1-dimensional convolutional neural network (1D-CNN) was trained to estimate respiratory modulation of AV nodal conduction properties from 1-minute segments of RR series, respiration signals, and atrial fibrillatory rates (AFR) using synthetic data that replicates clinical ECG-derived data. The synthetic data were generated using a network model of the AV node and 4 million unique model parameter sets. The 1D-CNN was then used to analyze respiratory modulation in clinical deep breathing test data of 28 patients in AF, where an ECG-derived respiration signal was extracted using a novel approach based on periodic component analysis. Results: We demonstrated using synthetic data that the 1D-CNN can estimate the respiratory modulation from RR series alone with a Pearson sample correlation of r = 0.805 and that the addition of either respiration signal (r = 0.830), AFR (r = 0.837), or both (r = 0.855) improves the estimation. Discussion: Initial results from analysis of ECG data suggest that our proposed estimate of respiration-induced autonomic modulation, aresp, is reproducible and sufficiently sensitive to monitor changes and detect individual differences. However, further studies are needed to verify the reproducibility, sensitivity, and clinical significance of aresp.
AB - Introduction: Information about autonomic nervous system (ANS) activity may offer insights about atrial fibrillation (AF) progression and support personalized AF treatment but is not easily accessible from the ECG. In this study, we propose a new approach for ECG-based assessment of respiratory modulation in atrioventricular (AV) nodal refractory period and conduction delay. Methods: A 1-dimensional convolutional neural network (1D-CNN) was trained to estimate respiratory modulation of AV nodal conduction properties from 1-minute segments of RR series, respiration signals, and atrial fibrillatory rates (AFR) using synthetic data that replicates clinical ECG-derived data. The synthetic data were generated using a network model of the AV node and 4 million unique model parameter sets. The 1D-CNN was then used to analyze respiratory modulation in clinical deep breathing test data of 28 patients in AF, where an ECG-derived respiration signal was extracted using a novel approach based on periodic component analysis. Results: We demonstrated using synthetic data that the 1D-CNN can estimate the respiratory modulation from RR series alone with a Pearson sample correlation of r = 0.805 and that the addition of either respiration signal (r = 0.830), AFR (r = 0.837), or both (r = 0.855) improves the estimation. Discussion: Initial results from analysis of ECG data suggest that our proposed estimate of respiration-induced autonomic modulation, aresp, is reproducible and sufficiently sensitive to monitor changes and detect individual differences. However, further studies are needed to verify the reproducibility, sensitivity, and clinical significance of aresp.
KW - atrial fibrillation
KW - atrioventricular node
KW - autonomic nervous system dysfunction
KW - respiration-induced autonomic modulation
KW - convolutional neural network
KW - deep breathing test
KW - network model
KW - ECG
U2 - 10.3389/fphys.2024.1281343
DO - 10.3389/fphys.2024.1281343
M3 - Article
C2 - 38779321
SN - 1664-042X
VL - 15
JO - Frontiers in Physiology
JF - Frontiers in Physiology
IS - 1281343
ER -