TY - JOUR
T1 - Ectoine Production by Halomonas boliviensis: Optimization Using Response Surface Methodology.
AU - Doan Van, Thuoc
AU - Guzmán, Hector
AU - Thi-Hang, Mai
AU - Hatti-Kaul, Rajni
PY - 2010
Y1 - 2010
N2 - Two cultivation steps were used for production of biomass and ectoine by Halomonas boliviensis, respectively. The optimization of some nutrient parameters in each step was investigated by using response surface methodology. Twenty and 12 experiments were performed to attain optimal conditions for biomass and ectoine production, respectively. The model predicted a maximum biomass concentration of 3.34 g/L on optimization of NH(4)Cl, K(2)HPO(4), and MgSO(4)*7H(2)O concentrations during the first cultivation, while a maximum ectoine concentration of 1.27 g/L was predicted on optimizing NaCl and monosodium glutamate concentrations in the second cultivation. The experimental values obtained (3.36 g biomass/L and 1.25 g ectoine/L) were in good agreement with the predicted values. The optimized conditions were also used for two-step 1.5-L fed-batch fermentations. In the first step, biomass concentration of 28.7 g/L was obtained while in the second step biomass concentration increased to 63 g/L. Ectoine concentration of 9.2 g/L was obtained, and the overall ectoine productivity was 6.3 g/L/day, being among the highest reported so far.
AB - Two cultivation steps were used for production of biomass and ectoine by Halomonas boliviensis, respectively. The optimization of some nutrient parameters in each step was investigated by using response surface methodology. Twenty and 12 experiments were performed to attain optimal conditions for biomass and ectoine production, respectively. The model predicted a maximum biomass concentration of 3.34 g/L on optimization of NH(4)Cl, K(2)HPO(4), and MgSO(4)*7H(2)O concentrations during the first cultivation, while a maximum ectoine concentration of 1.27 g/L was predicted on optimizing NaCl and monosodium glutamate concentrations in the second cultivation. The experimental values obtained (3.36 g biomass/L and 1.25 g ectoine/L) were in good agreement with the predicted values. The optimized conditions were also used for two-step 1.5-L fed-batch fermentations. In the first step, biomass concentration of 28.7 g/L was obtained while in the second step biomass concentration increased to 63 g/L. Ectoine concentration of 9.2 g/L was obtained, and the overall ectoine productivity was 6.3 g/L/day, being among the highest reported so far.
U2 - 10.1007/s10126-009-9246-6
DO - 10.1007/s10126-009-9246-6
M3 - Article
C2 - 19957094
SN - 1436-2236
VL - 12
SP - 586
EP - 593
JO - Marine Biotechnology
JF - Marine Biotechnology
ER -